基于二极管的盐溶液传感器的研制

Li Fang Lai, N. Zainal, C. Soon
{"title":"基于二极管的盐溶液传感器的研制","authors":"Li Fang Lai, N. Zainal, C. Soon","doi":"10.30880/emait.2020.01.01.002","DOIUrl":null,"url":null,"abstract":"High blood pressure/hypertension is a severe medical issue among Malaysians that could be reduced by monitoring our salt/sodium intake. One way is to use intraoral salt sensor; this in-mouth method however may cause discomfort and adopts complex and costly fabrication processes. Hence, an external and reusable electronic device, that could be used as a “sweat-sensor”, is preferred in detecting the sodium intake of the body. In this study, a potentiometric diode-based salt solution sensor was designed and fabricated in order to detect different salt solution concentrations with applied external voltage. A p-n junction diode sensor was successfully designed and fabricated using four consecutive techniques; thermal wet oxidation, photolithography, thermal diffusion and metallization. The average sheet resistance and resistivity of the diode sensor were measured to be 3.50 x 105 ± 0.66 Ω⁄sq and 3.05 ± 0.5 Ωcm respectively. This sensor showed ideal I-V diode characteristics with a knee voltage of 11.5V in forward bias condition and breakdown voltage of -4 V in reverse bias condition. For salt concentration detection, the sensor was able to detect salt concentration changes with respect to current flow, up to 45 mg/mL.","PeriodicalId":357370,"journal":{"name":"Emerging Advances in Integrated Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of A Diode-based Salt Solution Sensor\",\"authors\":\"Li Fang Lai, N. Zainal, C. Soon\",\"doi\":\"10.30880/emait.2020.01.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High blood pressure/hypertension is a severe medical issue among Malaysians that could be reduced by monitoring our salt/sodium intake. One way is to use intraoral salt sensor; this in-mouth method however may cause discomfort and adopts complex and costly fabrication processes. Hence, an external and reusable electronic device, that could be used as a “sweat-sensor”, is preferred in detecting the sodium intake of the body. In this study, a potentiometric diode-based salt solution sensor was designed and fabricated in order to detect different salt solution concentrations with applied external voltage. A p-n junction diode sensor was successfully designed and fabricated using four consecutive techniques; thermal wet oxidation, photolithography, thermal diffusion and metallization. The average sheet resistance and resistivity of the diode sensor were measured to be 3.50 x 105 ± 0.66 Ω⁄sq and 3.05 ± 0.5 Ωcm respectively. This sensor showed ideal I-V diode characteristics with a knee voltage of 11.5V in forward bias condition and breakdown voltage of -4 V in reverse bias condition. For salt concentration detection, the sensor was able to detect salt concentration changes with respect to current flow, up to 45 mg/mL.\",\"PeriodicalId\":357370,\"journal\":{\"name\":\"Emerging Advances in Integrated Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Advances in Integrated Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/emait.2020.01.01.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Advances in Integrated Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/emait.2020.01.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高血压/高血压是马来西亚人的一个严重的医疗问题,可以通过监测盐/钠的摄入量来减少。一种方法是使用口腔内盐传感器;然而,这种口腔内的方法可能会引起不适,并且采用复杂和昂贵的制造工艺。因此,可以用作“汗液传感器”的外部可重复使用的电子设备在检测人体钠摄入量方面是首选的。本文设计并制作了一种基于电位二极管的盐溶液传感器,用于在外加电压作用下检测不同浓度的盐溶液。采用四种连续技术成功地设计和制作了p-n结二极管传感器;热湿氧化,光刻,热扩散和金属化。测量到二极管传感器的平均薄片电阻和电阻率分别为3.50 × 105±0.66 Ω⁄sq和3.05±0.5 Ωcm。该传感器具有理想的I-V二极管特性,在正向偏置条件下膝盖电压为11.5V,在反向偏置条件下击穿电压为-4 V。对于盐浓度检测,该传感器能够检测到盐浓度随电流的变化,最高可达45 mg/mL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of A Diode-based Salt Solution Sensor
High blood pressure/hypertension is a severe medical issue among Malaysians that could be reduced by monitoring our salt/sodium intake. One way is to use intraoral salt sensor; this in-mouth method however may cause discomfort and adopts complex and costly fabrication processes. Hence, an external and reusable electronic device, that could be used as a “sweat-sensor”, is preferred in detecting the sodium intake of the body. In this study, a potentiometric diode-based salt solution sensor was designed and fabricated in order to detect different salt solution concentrations with applied external voltage. A p-n junction diode sensor was successfully designed and fabricated using four consecutive techniques; thermal wet oxidation, photolithography, thermal diffusion and metallization. The average sheet resistance and resistivity of the diode sensor were measured to be 3.50 x 105 ± 0.66 Ω⁄sq and 3.05 ± 0.5 Ωcm respectively. This sensor showed ideal I-V diode characteristics with a knee voltage of 11.5V in forward bias condition and breakdown voltage of -4 V in reverse bias condition. For salt concentration detection, the sensor was able to detect salt concentration changes with respect to current flow, up to 45 mg/mL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信