使用远程内存访问缩放线性代数内核

M. Krishnan, R. Lewis, Abhinav Vishnu
{"title":"使用远程内存访问缩放线性代数内核","authors":"M. Krishnan, R. Lewis, Abhinav Vishnu","doi":"10.1109/ICPPW.2010.57","DOIUrl":null,"url":null,"abstract":"This paper describes the scalability of linear algebra kernels based on remote memory access approach. The current approach differs from the other linear algebra algorithms by the explicit use of shared memory and remote memory access (RMA) communication rather than message passing. It is suitable for clusters and scalable shared memory systems. The experimental results on large scale systems (Linux-Infiniband cluster, Cray XT) demonstrate consistent performance advantages over ScaLAPACK suite, the leading implementation of parallel linear algebra algorithms used today. For example, on a Cray XT4 for a matrix size of 102400, our RMA-based matrix multiplication achieved over 55 tera???ops while ScaLAPACK’s pdgemm measured close to 42 tera???ops on 10000 processes.","PeriodicalId":415472,"journal":{"name":"2010 39th International Conference on Parallel Processing Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Scaling Linear Algebra Kernels Using Remote Memory Access\",\"authors\":\"M. Krishnan, R. Lewis, Abhinav Vishnu\",\"doi\":\"10.1109/ICPPW.2010.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the scalability of linear algebra kernels based on remote memory access approach. The current approach differs from the other linear algebra algorithms by the explicit use of shared memory and remote memory access (RMA) communication rather than message passing. It is suitable for clusters and scalable shared memory systems. The experimental results on large scale systems (Linux-Infiniband cluster, Cray XT) demonstrate consistent performance advantages over ScaLAPACK suite, the leading implementation of parallel linear algebra algorithms used today. For example, on a Cray XT4 for a matrix size of 102400, our RMA-based matrix multiplication achieved over 55 tera???ops while ScaLAPACK’s pdgemm measured close to 42 tera???ops on 10000 processes.\",\"PeriodicalId\":415472,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPPW.2010.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPPW.2010.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了基于远程存储器访问方法的线性代数核的可扩展性。当前的方法与其他线性代数算法的不同之处在于显式使用共享内存和远程内存访问(RMA)通信,而不是消息传递。它适用于集群和可扩展的共享内存系统。在大规模系统(Linux-Infiniband集群,Cray XT)上的实验结果表明,与ScaLAPACK套件(当今使用的并行线性代数算法的领先实现)相比,具有一致的性能优势。例如,在矩阵大小为102400的Cray XT4上,我们基于rma的矩阵乘法实现了超过55 tera?而ScaLAPACK的电池续航里程接近42 tera??10000个进程上的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling Linear Algebra Kernels Using Remote Memory Access
This paper describes the scalability of linear algebra kernels based on remote memory access approach. The current approach differs from the other linear algebra algorithms by the explicit use of shared memory and remote memory access (RMA) communication rather than message passing. It is suitable for clusters and scalable shared memory systems. The experimental results on large scale systems (Linux-Infiniband cluster, Cray XT) demonstrate consistent performance advantages over ScaLAPACK suite, the leading implementation of parallel linear algebra algorithms used today. For example, on a Cray XT4 for a matrix size of 102400, our RMA-based matrix multiplication achieved over 55 tera???ops while ScaLAPACK’s pdgemm measured close to 42 tera???ops on 10000 processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信