{"title":"基于迭代重加权振幅流的稀疏相位恢复","authors":"G. Wang, Liang Zhang, G. Giannakis, Jie Chen","doi":"10.23919/EUSIPCO.2018.8553118","DOIUrl":null,"url":null,"abstract":"Sparse phase retrieval (PR) aims at reconstructing a sparse signal vector from a few phaseless linear measurements. It emerges naturally in diverse applications, but it is NP-hard in general. Drawing from advances in nonconvex optimization, this paper presents a new algorithm that is termed compressive reweighted amplitude flow (CRAF) for sparse PR. CRAF operates in two stages: Stage one computes an initial guess by means of a new spectral procedure, and stage two implements a few hard thresholding based iteratively reweighted gradient iterations on the amplitude-based least-squares cost. When there are sufficient measurements, CRAF reconstructs the true signal vector exactly under suitable conditions. Furthermore, its sample complexity coincides with that of the state-of-the-art approaches. Numerical experiments showcase improved performance of the proposed approach relative to existing alternatives.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparse Phase Retrieval Via Iteratively Reweighted Amplitude Flow\",\"authors\":\"G. Wang, Liang Zhang, G. Giannakis, Jie Chen\",\"doi\":\"10.23919/EUSIPCO.2018.8553118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse phase retrieval (PR) aims at reconstructing a sparse signal vector from a few phaseless linear measurements. It emerges naturally in diverse applications, but it is NP-hard in general. Drawing from advances in nonconvex optimization, this paper presents a new algorithm that is termed compressive reweighted amplitude flow (CRAF) for sparse PR. CRAF operates in two stages: Stage one computes an initial guess by means of a new spectral procedure, and stage two implements a few hard thresholding based iteratively reweighted gradient iterations on the amplitude-based least-squares cost. When there are sufficient measurements, CRAF reconstructs the true signal vector exactly under suitable conditions. Furthermore, its sample complexity coincides with that of the state-of-the-art approaches. Numerical experiments showcase improved performance of the proposed approach relative to existing alternatives.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse Phase Retrieval Via Iteratively Reweighted Amplitude Flow
Sparse phase retrieval (PR) aims at reconstructing a sparse signal vector from a few phaseless linear measurements. It emerges naturally in diverse applications, but it is NP-hard in general. Drawing from advances in nonconvex optimization, this paper presents a new algorithm that is termed compressive reweighted amplitude flow (CRAF) for sparse PR. CRAF operates in two stages: Stage one computes an initial guess by means of a new spectral procedure, and stage two implements a few hard thresholding based iteratively reweighted gradient iterations on the amplitude-based least-squares cost. When there are sufficient measurements, CRAF reconstructs the true signal vector exactly under suitable conditions. Furthermore, its sample complexity coincides with that of the state-of-the-art approaches. Numerical experiments showcase improved performance of the proposed approach relative to existing alternatives.