并网应用太阳能氢/燃料电池混合能源系统的建模、控制与仿真

Tourkia Lajnef, S. Abid, A. Ammous
{"title":"并网应用太阳能氢/燃料电池混合能源系统的建模、控制与仿真","authors":"Tourkia Lajnef, S. Abid, A. Ammous","doi":"10.1155/2013/352765","DOIUrl":null,"url":null,"abstract":"Different energy sources and converters need to be integrated with each other for extended usage of alternative energy, in order to meet sustained load demands during various weather conditions. The objective of this paper is to associate photovoltaic generators, fuel cells, and electrolysers. Here, to sustain the power demand and solve the energy storage problem, electrical energy can be stored in the form of hydrogen. By using an electrolyser, hydrogen can be generated and stored for future use. The hydrogen produced by the electrolyser using PV power is used in the FC system and acts as an energy buffer. Thus, the effects of reduction and even the absence of the available power from the PV system can be easily tackled. Modeling and simulations are performed using MATLAB/Simulink and SimPowerSystems packages and results are presented to verify the effectiveness of the proposed system.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Modeling, Control, and Simulation of a Solar Hydrogen/Fuel Cell Hybrid Energy System for Grid-Connected Applications\",\"authors\":\"Tourkia Lajnef, S. Abid, A. Ammous\",\"doi\":\"10.1155/2013/352765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different energy sources and converters need to be integrated with each other for extended usage of alternative energy, in order to meet sustained load demands during various weather conditions. The objective of this paper is to associate photovoltaic generators, fuel cells, and electrolysers. Here, to sustain the power demand and solve the energy storage problem, electrical energy can be stored in the form of hydrogen. By using an electrolyser, hydrogen can be generated and stored for future use. The hydrogen produced by the electrolyser using PV power is used in the FC system and acts as an energy buffer. Thus, the effects of reduction and even the absence of the available power from the PV system can be easily tackled. Modeling and simulations are performed using MATLAB/Simulink and SimPowerSystems packages and results are presented to verify the effectiveness of the proposed system.\",\"PeriodicalId\":412593,\"journal\":{\"name\":\"Advances in Power Electronic\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Power Electronic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/352765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Power Electronic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/352765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

不同的能源和转换器需要相互集成,以扩展替代能源的使用,以满足各种天气条件下的持续负荷需求。本文的目的是将光伏发电机、燃料电池和电解槽联系起来。在这里,为了维持电力需求并解决能量存储问题,电能可以以氢的形式存储。通过使用电解槽,氢气可以产生并储存以备将来使用。电解槽利用光伏发电产生的氢气用于FC系统,并作为能量缓冲器。因此,减少的影响,甚至没有可用的电力从光伏系统可以很容易地解决。利用MATLAB/Simulink和SimPowerSystems进行了建模和仿真,并给出了仿真结果,验证了所提系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling, Control, and Simulation of a Solar Hydrogen/Fuel Cell Hybrid Energy System for Grid-Connected Applications
Different energy sources and converters need to be integrated with each other for extended usage of alternative energy, in order to meet sustained load demands during various weather conditions. The objective of this paper is to associate photovoltaic generators, fuel cells, and electrolysers. Here, to sustain the power demand and solve the energy storage problem, electrical energy can be stored in the form of hydrogen. By using an electrolyser, hydrogen can be generated and stored for future use. The hydrogen produced by the electrolyser using PV power is used in the FC system and acts as an energy buffer. Thus, the effects of reduction and even the absence of the available power from the PV system can be easily tackled. Modeling and simulations are performed using MATLAB/Simulink and SimPowerSystems packages and results are presented to verify the effectiveness of the proposed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信