如何去除中位数指甲油

A. Fink
{"title":"如何去除中位数指甲油","authors":"A. Fink","doi":"10.1137/0909064","DOIUrl":null,"url":null,"abstract":"Tukey's median polish is an algorithm for smoothing data in two-way tables. Each iteration lowers the $L_1 $ norm of the residual. For commensurable data the algorithm converges in a finite number of steps. It does not, in general, converge to the least $L_1 $ norm residual. We provide an algorithm that converges in a finite number of steps for any real data and gives the least $L_1 $ residual.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"How to Polish off Median Polish\",\"authors\":\"A. Fink\",\"doi\":\"10.1137/0909064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tukey's median polish is an algorithm for smoothing data in two-way tables. Each iteration lowers the $L_1 $ norm of the residual. For commensurable data the algorithm converges in a finite number of steps. It does not, in general, converge to the least $L_1 $ norm residual. We provide an algorithm that converges in a finite number of steps for any real data and gives the least $L_1 $ residual.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0909064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0909064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Tukey的中位数抛光是一种用于平滑双向表中的数据的算法。每次迭代都会降低残差的L_1范数。对于可通约数据,算法在有限步内收敛。一般来说,它不会收敛到最小的L_1范数残差。我们提供了一种算法,可以在有限步数内收敛于任何真实数据,并给出最小的$L_1 $残差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Polish off Median Polish
Tukey's median polish is an algorithm for smoothing data in two-way tables. Each iteration lowers the $L_1 $ norm of the residual. For commensurable data the algorithm converges in a finite number of steps. It does not, in general, converge to the least $L_1 $ norm residual. We provide an algorithm that converges in a finite number of steps for any real data and gives the least $L_1 $ residual.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信