D. Muramatsu, S. Hashimoto, T. Tsunashima, T. Kaburagi, M. Sasaki, Takashi Matsumoto
{"title":"利用随机动力系统的亲水指数/电荷二维轨迹推断跨膜区域计数","authors":"D. Muramatsu, S. Hashimoto, T. Tsunashima, T. Kaburagi, M. Sasaki, Takashi Matsumoto","doi":"10.1109/NNSP.2003.1318008","DOIUrl":null,"url":null,"abstract":"A new algorithm is proposed for inferring the number of transmembrane regions of transmembrane proteins from two dimensional vector trajectories consisting of hydropathy index and charge of amino acids by stochastic dynamical system models. The prediction accuracy of a preliminary experiment is 94%. Since no fine-tuning is done, this appears encouraging.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Inferring transmembrane region counts with hydropathy index/charge two dimensional trajectories of stochastic dynamical systems\",\"authors\":\"D. Muramatsu, S. Hashimoto, T. Tsunashima, T. Kaburagi, M. Sasaki, Takashi Matsumoto\",\"doi\":\"10.1109/NNSP.2003.1318008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm is proposed for inferring the number of transmembrane regions of transmembrane proteins from two dimensional vector trajectories consisting of hydropathy index and charge of amino acids by stochastic dynamical system models. The prediction accuracy of a preliminary experiment is 94%. Since no fine-tuning is done, this appears encouraging.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inferring transmembrane region counts with hydropathy index/charge two dimensional trajectories of stochastic dynamical systems
A new algorithm is proposed for inferring the number of transmembrane regions of transmembrane proteins from two dimensional vector trajectories consisting of hydropathy index and charge of amino acids by stochastic dynamical system models. The prediction accuracy of a preliminary experiment is 94%. Since no fine-tuning is done, this appears encouraging.