{"title":"基于bert的可扩展轨迹输入系统KAMEL的演示","authors":"Mashaal Musleh, M. Mokbel","doi":"10.1145/3555041.3589733","DOIUrl":null,"url":null,"abstract":"This demo presents KAMEL; a novel trajectory imputation framework that aims to impute sparse trajectories as a means of increasing their accuracy, and hence the accuracy of their applications. Unlike the large majority of current trajectory imputation techniques, KAMEL does not require the knowledge or the availability of the underlying road network, which makes it applicable to important applications like map inference that need to infer the road network itself. Audience will experience KAMEL through various scenarios that show the imputation accuracy as well as KAMEL internals.","PeriodicalId":161812,"journal":{"name":"Companion of the 2023 International Conference on Management of Data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Demonstration of KAMEL: A Scalable BERT-based System for Trajectory Imputation\",\"authors\":\"Mashaal Musleh, M. Mokbel\",\"doi\":\"10.1145/3555041.3589733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This demo presents KAMEL; a novel trajectory imputation framework that aims to impute sparse trajectories as a means of increasing their accuracy, and hence the accuracy of their applications. Unlike the large majority of current trajectory imputation techniques, KAMEL does not require the knowledge or the availability of the underlying road network, which makes it applicable to important applications like map inference that need to infer the road network itself. Audience will experience KAMEL through various scenarios that show the imputation accuracy as well as KAMEL internals.\",\"PeriodicalId\":161812,\"journal\":{\"name\":\"Companion of the 2023 International Conference on Management of Data\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2023 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555041.3589733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2023 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555041.3589733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Demonstration of KAMEL: A Scalable BERT-based System for Trajectory Imputation
This demo presents KAMEL; a novel trajectory imputation framework that aims to impute sparse trajectories as a means of increasing their accuracy, and hence the accuracy of their applications. Unlike the large majority of current trajectory imputation techniques, KAMEL does not require the knowledge or the availability of the underlying road network, which makes it applicable to important applications like map inference that need to infer the road network itself. Audience will experience KAMEL through various scenarios that show the imputation accuracy as well as KAMEL internals.