基于多特征集成的阴影检测

K. Lo, Mau-Tsuen Yang
{"title":"基于多特征集成的阴影检测","authors":"K. Lo, Mau-Tsuen Yang","doi":"10.1109/ICPR.2006.1047","DOIUrl":null,"url":null,"abstract":"Cast shadows of moving foreground objects in a scene often result in problems for many applications such as surveillance, object tracking/recognition, video content analysis and intelligent transportation systems. In this paper we presented an algorithm exploiting information of color, shading, texture, neighborhoods and temporal consistency to detect shadows in a scene efficiently and reliably. The experimental results showed that the proposed method can detect umbra as well as penumbra in different kinds of scenarios under various illumination conditions","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Shadow Detection by Integrating Multiple Features\",\"authors\":\"K. Lo, Mau-Tsuen Yang\",\"doi\":\"10.1109/ICPR.2006.1047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cast shadows of moving foreground objects in a scene often result in problems for many applications such as surveillance, object tracking/recognition, video content analysis and intelligent transportation systems. In this paper we presented an algorithm exploiting information of color, shading, texture, neighborhoods and temporal consistency to detect shadows in a scene efficiently and reliably. The experimental results showed that the proposed method can detect umbra as well as penumbra in different kinds of scenarios under various illumination conditions\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.1047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.1047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

场景中移动前景物体的阴影通常会导致许多应用程序出现问题,例如监视,物体跟踪/识别,视频内容分析和智能交通系统。本文提出了一种利用颜色、阴影、纹理、邻域和时间一致性等信息高效、可靠地检测场景中的阴影的算法。实验结果表明,该方法可以在不同光照条件下检测出不同场景下的本影和半影
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shadow Detection by Integrating Multiple Features
Cast shadows of moving foreground objects in a scene often result in problems for many applications such as surveillance, object tracking/recognition, video content analysis and intelligent transportation systems. In this paper we presented an algorithm exploiting information of color, shading, texture, neighborhoods and temporal consistency to detect shadows in a scene efficiently and reliably. The experimental results showed that the proposed method can detect umbra as well as penumbra in different kinds of scenarios under various illumination conditions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信