基于网络重构的抗干扰和抗dos覆盖网络

Maximilian Drees, R. Gmyr, C. Scheideler
{"title":"基于网络重构的抗干扰和抗dos覆盖网络","authors":"Maximilian Drees, R. Gmyr, C. Scheideler","doi":"10.1145/2935764.2935783","DOIUrl":null,"url":null,"abstract":"We present three robust overlay networks: First, we present a network that organizes the nodes into an expander and is resistant to even massive adversarial churn. Second, we develop a network based on the hypercube that maintains connectivity under adversarial DoS-attacks. For the DoS-attacks we use the notion of a Ω(log log n)-late adversary which only has access to topological information that is at least Ω(log log n) rounds old. Finally, we develop a network that combines both churn- and DoS-resistance. The networks gain their robustness through constant network reconfiguration, i.e., the topology of the networks changes constantly. Our reconfiguration algorithms are based on node sampling primitives for expanders and hypercubes that allow each node to sample a logarithmic number of nodes uniformly at random in O(log log n) communication rounds. These primitives are specific to overlay networks and their optimal runtime represents an exponential improvement over known techniques. Our results have a wide range of applications, for example in the area of scalable and robust peer-to-peer systems.","PeriodicalId":346939,"journal":{"name":"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"40 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Churn- and DoS-resistant Overlay Networks Based on Network Reconfiguration\",\"authors\":\"Maximilian Drees, R. Gmyr, C. Scheideler\",\"doi\":\"10.1145/2935764.2935783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present three robust overlay networks: First, we present a network that organizes the nodes into an expander and is resistant to even massive adversarial churn. Second, we develop a network based on the hypercube that maintains connectivity under adversarial DoS-attacks. For the DoS-attacks we use the notion of a Ω(log log n)-late adversary which only has access to topological information that is at least Ω(log log n) rounds old. Finally, we develop a network that combines both churn- and DoS-resistance. The networks gain their robustness through constant network reconfiguration, i.e., the topology of the networks changes constantly. Our reconfiguration algorithms are based on node sampling primitives for expanders and hypercubes that allow each node to sample a logarithmic number of nodes uniformly at random in O(log log n) communication rounds. These primitives are specific to overlay networks and their optimal runtime represents an exponential improvement over known techniques. Our results have a wide range of applications, for example in the area of scalable and robust peer-to-peer systems.\",\"PeriodicalId\":346939,\"journal\":{\"name\":\"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"40 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2935764.2935783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2935764.2935783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了三个健壮的覆盖网络:首先,我们提出了一个网络,它将节点组织成一个扩展器,并且可以抵抗大规模的对抗性流失。其次,我们开发了一个基于超立方体的网络,在对抗dos攻击的情况下保持连接。对于dos攻击,我们使用Ω(log log n)晚攻击者的概念,它只能访问至少Ω(log log n)次的拓扑信息。最后,我们开发了一个结合了流失和dos抵抗的网络。网络的鲁棒性是通过不断的网络重构获得的,即网络的拓扑结构是不断变化的。我们的重构算法基于扩展器和超立方体的节点采样原语,允许每个节点在O(log log n)轮通信中均匀随机采样对数个数的节点。这些原语是特定于覆盖网络的,它们的最佳运行时间代表了比已知技术的指数级改进。我们的结果具有广泛的应用范围,例如在可扩展和健壮的点对点系统领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Churn- and DoS-resistant Overlay Networks Based on Network Reconfiguration
We present three robust overlay networks: First, we present a network that organizes the nodes into an expander and is resistant to even massive adversarial churn. Second, we develop a network based on the hypercube that maintains connectivity under adversarial DoS-attacks. For the DoS-attacks we use the notion of a Ω(log log n)-late adversary which only has access to topological information that is at least Ω(log log n) rounds old. Finally, we develop a network that combines both churn- and DoS-resistance. The networks gain their robustness through constant network reconfiguration, i.e., the topology of the networks changes constantly. Our reconfiguration algorithms are based on node sampling primitives for expanders and hypercubes that allow each node to sample a logarithmic number of nodes uniformly at random in O(log log n) communication rounds. These primitives are specific to overlay networks and their optimal runtime represents an exponential improvement over known techniques. Our results have a wide range of applications, for example in the area of scalable and robust peer-to-peer systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信