基于成功历史的差分进化参数自适应

Ryoji Tanabe, A. Fukunaga
{"title":"基于成功历史的差分进化参数自适应","authors":"Ryoji Tanabe, A. Fukunaga","doi":"10.1109/CEC.2013.6557555","DOIUrl":null,"url":null,"abstract":"Differential Evolution is a simple, but effective approach for numerical optimization. Since the search efficiency of DE depends significantly on its control parameter settings, there has been much recent work on developing self-adaptive mechanisms for DE. We propose a new, parameter adaptation technique for DE which uses a historical memory of successful control parameter settings to guide the selection of future control parameter values. The proposed method is evaluated by comparison on 28 problems from the CEC2013 benchmark set, as well as CEC2005 benchmarks and the set of 13 classical benchmark problems. The experimental results show that a DE using our success-history based parameter adaptation method is competitive with the state-of-the-art DE algorithms.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"873","resultStr":"{\"title\":\"Success-history based parameter adaptation for Differential Evolution\",\"authors\":\"Ryoji Tanabe, A. Fukunaga\",\"doi\":\"10.1109/CEC.2013.6557555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential Evolution is a simple, but effective approach for numerical optimization. Since the search efficiency of DE depends significantly on its control parameter settings, there has been much recent work on developing self-adaptive mechanisms for DE. We propose a new, parameter adaptation technique for DE which uses a historical memory of successful control parameter settings to guide the selection of future control parameter values. The proposed method is evaluated by comparison on 28 problems from the CEC2013 benchmark set, as well as CEC2005 benchmarks and the set of 13 classical benchmark problems. The experimental results show that a DE using our success-history based parameter adaptation method is competitive with the state-of-the-art DE algorithms.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"873\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 873

摘要

微分进化是一种简单而有效的数值优化方法。由于DE的搜索效率在很大程度上取决于其控制参数设置,因此最近有很多研究工作在开发DE的自适应机制。我们提出了一种新的DE参数自适应技术,该技术使用成功控制参数设置的历史记忆来指导未来控制参数值的选择。通过对CEC2013基准集中的28个问题、CEC2005基准集和13个经典基准问题集的比较,对所提方法进行了评价。实验结果表明,采用基于成功历史的参数自适应方法的DE与目前最先进的DE算法相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Success-history based parameter adaptation for Differential Evolution
Differential Evolution is a simple, but effective approach for numerical optimization. Since the search efficiency of DE depends significantly on its control parameter settings, there has been much recent work on developing self-adaptive mechanisms for DE. We propose a new, parameter adaptation technique for DE which uses a historical memory of successful control parameter settings to guide the selection of future control parameter values. The proposed method is evaluated by comparison on 28 problems from the CEC2013 benchmark set, as well as CEC2005 benchmarks and the set of 13 classical benchmark problems. The experimental results show that a DE using our success-history based parameter adaptation method is competitive with the state-of-the-art DE algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信