利用感知线谱对频率进行说话人识别

Md. Sahidullah, G. Saha
{"title":"利用感知线谱对频率进行说话人识别","authors":"Md. Sahidullah, G. Saha","doi":"10.1109/NCC.2010.5430208","DOIUrl":null,"url":null,"abstract":"Line Spectral Pairs Frequencies (LSFs) provide an alternative representation of the linear prediction coefficients. In this paper an investigation is carried out for extracting feature for speaker identification task which is based on perceptual analysis of speech signal and LSF. A modified version of the standard perceptual analysis is applied to obtain better performance. We have extracted the conventional LSF from the perceptually modified speech signal. State-of-the art Gaussian Mixture Model (GMM) based classifier is employed to design the closed set speaker identification system. The proposed method shows significant performance improvement over existing techniques in three different speech corpuses.","PeriodicalId":130953,"journal":{"name":"2010 National Conference On Communications (NCC)","volume":"20 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the use of perceptual Line Spectral Pairs Frequencies for speaker identification\",\"authors\":\"Md. Sahidullah, G. Saha\",\"doi\":\"10.1109/NCC.2010.5430208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Line Spectral Pairs Frequencies (LSFs) provide an alternative representation of the linear prediction coefficients. In this paper an investigation is carried out for extracting feature for speaker identification task which is based on perceptual analysis of speech signal and LSF. A modified version of the standard perceptual analysis is applied to obtain better performance. We have extracted the conventional LSF from the perceptually modified speech signal. State-of-the art Gaussian Mixture Model (GMM) based classifier is employed to design the closed set speaker identification system. The proposed method shows significant performance improvement over existing techniques in three different speech corpuses.\",\"PeriodicalId\":130953,\"journal\":{\"name\":\"2010 National Conference On Communications (NCC)\",\"volume\":\"20 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 National Conference On Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2010.5430208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 National Conference On Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2010.5430208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

线谱对频率(lfs)提供了线性预测系数的另一种表示。本文研究了基于语音信号感知分析和LSF的说话人识别任务特征提取方法。为了获得更好的性能,采用了标准感知分析的改进版本。我们从感知修正的语音信号中提取了传统的LSF。采用基于高斯混合模型(GMM)的分类器设计闭集说话人识别系统。在三种不同的语音语料库中,所提出的方法比现有技术的性能有了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the use of perceptual Line Spectral Pairs Frequencies for speaker identification
Line Spectral Pairs Frequencies (LSFs) provide an alternative representation of the linear prediction coefficients. In this paper an investigation is carried out for extracting feature for speaker identification task which is based on perceptual analysis of speech signal and LSF. A modified version of the standard perceptual analysis is applied to obtain better performance. We have extracted the conventional LSF from the perceptually modified speech signal. State-of-the art Gaussian Mixture Model (GMM) based classifier is employed to design the closed set speaker identification system. The proposed method shows significant performance improvement over existing techniques in three different speech corpuses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信