基于多尺度纹理字典的冠状血管自动检测

A. Zifan, B. Chapman
{"title":"基于多尺度纹理字典的冠状血管自动检测","authors":"A. Zifan, B. Chapman","doi":"10.1109/HISB.2012.40","DOIUrl":null,"url":null,"abstract":"In this paper we present a new automatic method for coronary artery vessel detection. We employ a texture modelling approach based on image textons as texture features, in the context of a classification experiment, where we attempt to discriminate between vessel and non-vessel like shapes in X-ray angiogram images. Experiments were conducted on a real patient database. The results show that the proposed model can perform well and distinguish vessel areas from others in an efficient manner, and outperforms other existing methods.","PeriodicalId":375089,"journal":{"name":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","volume":"161 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic Detection of Coronary Vessels Using Mutli-scale Texture Dictionaries\",\"authors\":\"A. Zifan, B. Chapman\",\"doi\":\"10.1109/HISB.2012.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new automatic method for coronary artery vessel detection. We employ a texture modelling approach based on image textons as texture features, in the context of a classification experiment, where we attempt to discriminate between vessel and non-vessel like shapes in X-ray angiogram images. Experiments were conducted on a real patient database. The results show that the proposed model can perform well and distinguish vessel areas from others in an efficient manner, and outperforms other existing methods.\",\"PeriodicalId\":375089,\"journal\":{\"name\":\"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology\",\"volume\":\"161 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HISB.2012.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HISB.2012.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种新的冠状动脉血管自动检测方法。在分类实验的背景下,我们采用基于图像纹理作为纹理特征的纹理建模方法,在该实验中,我们试图区分x射线血管造影图像中的血管和非血管形状。实验是在一个真实的病人数据库上进行的。结果表明,该模型具有良好的性能,能够有效地区分船舶区域,优于现有的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Detection of Coronary Vessels Using Mutli-scale Texture Dictionaries
In this paper we present a new automatic method for coronary artery vessel detection. We employ a texture modelling approach based on image textons as texture features, in the context of a classification experiment, where we attempt to discriminate between vessel and non-vessel like shapes in X-ray angiogram images. Experiments were conducted on a real patient database. The results show that the proposed model can perform well and distinguish vessel areas from others in an efficient manner, and outperforms other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信