随机空中交通网络流优化的进化多目标方法

Mingming Xiao, Kaiquan Cai, F. Linke
{"title":"随机空中交通网络流优化的进化多目标方法","authors":"Mingming Xiao, Kaiquan Cai, F. Linke","doi":"10.1109/ITSC.2015.333","DOIUrl":null,"url":null,"abstract":"The Stochastic Air Traffic Network Flow Optimization (SATNFO) problem aims to seek a set of optimum and robust flight plans to ensure a safe, orderly and expeditious air traffic flow in the presence of uncertainties. Due to the very natures of multi-objective, large-scale and non-separable in the SATNFO problem, this paper sparks an evolutionary multi-objective optimization way for solving it. Firstly, we formulate it as a multi-objective problem, with performance and robustness as separate goals. In this model, robustness, which indicates the ability of a flight plan to cope with negative effects of uncertainty, is quantified and introduced as an objective. And, two conflicting performance objectives, i.e., minimizing the workload as well as the flight delays over the network, are involved. Then, we present an adaptive metaheuristic algorithm, termed as aNSGA-II, to solve the SATNFO problem. In aNSGA-II, a parameter adaptive mechanism is designed to dynamically adjust the probability of crossover and mutation based on problem context and evolution mechanism. It helps to balance exploitation and exploration during the evolutionary process, and thus maintain diversity of solutions and improve the convergence performance of the algorithm. Empirical studies using real data of flights and network in China are carried out, and show ability of our approach in providing efficient and robust flight plans and supporting better decision-making for air traffic controllers in a stochastic scenario.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Evolutionary Multi-objective Approach for Stochastic Air Traffic Network Flow Optimization\",\"authors\":\"Mingming Xiao, Kaiquan Cai, F. Linke\",\"doi\":\"10.1109/ITSC.2015.333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Stochastic Air Traffic Network Flow Optimization (SATNFO) problem aims to seek a set of optimum and robust flight plans to ensure a safe, orderly and expeditious air traffic flow in the presence of uncertainties. Due to the very natures of multi-objective, large-scale and non-separable in the SATNFO problem, this paper sparks an evolutionary multi-objective optimization way for solving it. Firstly, we formulate it as a multi-objective problem, with performance and robustness as separate goals. In this model, robustness, which indicates the ability of a flight plan to cope with negative effects of uncertainty, is quantified and introduced as an objective. And, two conflicting performance objectives, i.e., minimizing the workload as well as the flight delays over the network, are involved. Then, we present an adaptive metaheuristic algorithm, termed as aNSGA-II, to solve the SATNFO problem. In aNSGA-II, a parameter adaptive mechanism is designed to dynamically adjust the probability of crossover and mutation based on problem context and evolution mechanism. It helps to balance exploitation and exploration during the evolutionary process, and thus maintain diversity of solutions and improve the convergence performance of the algorithm. Empirical studies using real data of flights and network in China are carried out, and show ability of our approach in providing efficient and robust flight plans and supporting better decision-making for air traffic controllers in a stochastic scenario.\",\"PeriodicalId\":124818,\"journal\":{\"name\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2015.333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随机空中交通网络流优化(SATNFO)问题旨在寻求一组最优且鲁棒的飞行计划,以确保存在不确定性的空中交通流安全、有序和快速。由于SATNFO问题具有多目标、大规模和不可分性的特点,本文提出了一种求解该问题的进化多目标优化方法。首先,我们将其表述为一个多目标问题,将性能和鲁棒性作为单独的目标。在该模型中,鲁棒性被量化并作为目标引入,鲁棒性表示飞行计划应对不确定性负面影响的能力。并且,涉及到两个相互冲突的性能目标,即最小化工作量和网络上的航班延误。然后,我们提出了一种自适应元启发式算法,称为aNSGA-II,以解决SATNFO问题。在aNSGA-II中,设计了参数自适应机制,根据问题情境和进化机制动态调整交叉和突变的概率。它有助于平衡进化过程中的开发和探索,从而保持解的多样性,提高算法的收敛性能。利用中国航班和网络的真实数据进行的实证研究表明,我们的方法能够在随机情况下为空中交通管制员提供有效和稳健的飞行计划,并支持更好的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Evolutionary Multi-objective Approach for Stochastic Air Traffic Network Flow Optimization
The Stochastic Air Traffic Network Flow Optimization (SATNFO) problem aims to seek a set of optimum and robust flight plans to ensure a safe, orderly and expeditious air traffic flow in the presence of uncertainties. Due to the very natures of multi-objective, large-scale and non-separable in the SATNFO problem, this paper sparks an evolutionary multi-objective optimization way for solving it. Firstly, we formulate it as a multi-objective problem, with performance and robustness as separate goals. In this model, robustness, which indicates the ability of a flight plan to cope with negative effects of uncertainty, is quantified and introduced as an objective. And, two conflicting performance objectives, i.e., minimizing the workload as well as the flight delays over the network, are involved. Then, we present an adaptive metaheuristic algorithm, termed as aNSGA-II, to solve the SATNFO problem. In aNSGA-II, a parameter adaptive mechanism is designed to dynamically adjust the probability of crossover and mutation based on problem context and evolution mechanism. It helps to balance exploitation and exploration during the evolutionary process, and thus maintain diversity of solutions and improve the convergence performance of the algorithm. Empirical studies using real data of flights and network in China are carried out, and show ability of our approach in providing efficient and robust flight plans and supporting better decision-making for air traffic controllers in a stochastic scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信