快速排序:极限分布和大偏差的改进右尾渐近(扩展摘要)

J. A. Fill, Wei-Chun Hung
{"title":"快速排序:极限分布和大偏差的改进右尾渐近(扩展摘要)","authors":"J. A. Fill, Wei-Chun Hung","doi":"10.1137/1.9781611975505.9","DOIUrl":null,"url":null,"abstract":"We substantially refine asymptotic logarithmic upper bounds produced by Svante Janson (2015) on the right tail of the limiting QuickSort distribution function $F$ and by Fill and Hung (2018) on the right tails of the corresponding density $f$ and of the absolute derivatives of $f$ of each order. For example, we establish an upper bound on $\\log[1 - F(x)]$ that matches conjectured asymptotics of Knessl and Szpankowski (1999) through terms of order $(\\log x)^2$; the corresponding order for the Janson (2015) bound is the lead order, $x \\log x$. \nUsing the refined asymptotic bounds on $F$, we derive right-tail large deviation (LD) results for the distribution of the number of comparisons required by QuickSort that substantially sharpen the two-sided LD results of McDiarmid and Hayward (1996).","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"QuickSort: Improved right-tail asymptotics for the limiting distribution, and large deviations (Extended Abstract)\",\"authors\":\"J. A. Fill, Wei-Chun Hung\",\"doi\":\"10.1137/1.9781611975505.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We substantially refine asymptotic logarithmic upper bounds produced by Svante Janson (2015) on the right tail of the limiting QuickSort distribution function $F$ and by Fill and Hung (2018) on the right tails of the corresponding density $f$ and of the absolute derivatives of $f$ of each order. For example, we establish an upper bound on $\\\\log[1 - F(x)]$ that matches conjectured asymptotics of Knessl and Szpankowski (1999) through terms of order $(\\\\log x)^2$; the corresponding order for the Janson (2015) bound is the lead order, $x \\\\log x$. \\nUsing the refined asymptotic bounds on $F$, we derive right-tail large deviation (LD) results for the distribution of the number of comparisons required by QuickSort that substantially sharpen the two-sided LD results of McDiarmid and Hayward (1996).\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611975505.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611975505.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们对Svante Janson(2015)在极限快速排序分布函数$F$的右尾部以及Fill and Hung(2018)在相应密度$F$的右尾部以及每阶$F$的绝对导数的右尾部所产生的渐近对数上界进行了实质性的改进。例如,我们建立了$\log[1 - F(x)]$的上界,该上界通过$(\log x)^2$的阶项匹配Knessl和Szpankowski(1999)的猜想渐近性;Janson(2015)绑定的相应顺序是先导顺序,$x \log x$。使用F$上的精炼渐近界,我们得到了快速排序所需的比较次数分布的右尾大偏差(LD)结果,该结果大大提高了McDiarmid和Hayward(1996)的双边LD结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QuickSort: Improved right-tail asymptotics for the limiting distribution, and large deviations (Extended Abstract)
We substantially refine asymptotic logarithmic upper bounds produced by Svante Janson (2015) on the right tail of the limiting QuickSort distribution function $F$ and by Fill and Hung (2018) on the right tails of the corresponding density $f$ and of the absolute derivatives of $f$ of each order. For example, we establish an upper bound on $\log[1 - F(x)]$ that matches conjectured asymptotics of Knessl and Szpankowski (1999) through terms of order $(\log x)^2$; the corresponding order for the Janson (2015) bound is the lead order, $x \log x$. Using the refined asymptotic bounds on $F$, we derive right-tail large deviation (LD) results for the distribution of the number of comparisons required by QuickSort that substantially sharpen the two-sided LD results of McDiarmid and Hayward (1996).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信