{"title":"关于比较最优双枢轴快速选择的扩展说明","authors":"Daniel Krenn","doi":"10.1137/1.9781611974775.11","DOIUrl":null,"url":null,"abstract":"In this note the precise minimum number of key comparisons any dual-pivot quickselect algorithm (without sampling) needs on average is determined. The result is in the form of exact as well as asymptotic formul\\ae{} of this number of a comparison-optimal algorithm. It turns out that the main terms of these asymptotic expansions coincide with the main terms of the corresponding analysis of the classical quickselect, but still---as this was shown for Yaroslavskiy quickselect---more comparisons are needed in the dual-pivot variant. The results are obtained by solving a second order differential equation for the generating function obtained from a recursive approach.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Extended Note on the Comparison-optimal Dual Pivot Quickselect\",\"authors\":\"Daniel Krenn\",\"doi\":\"10.1137/1.9781611974775.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note the precise minimum number of key comparisons any dual-pivot quickselect algorithm (without sampling) needs on average is determined. The result is in the form of exact as well as asymptotic formul\\\\ae{} of this number of a comparison-optimal algorithm. It turns out that the main terms of these asymptotic expansions coincide with the main terms of the corresponding analysis of the classical quickselect, but still---as this was shown for Yaroslavskiy quickselect---more comparisons are needed in the dual-pivot variant. The results are obtained by solving a second order differential equation for the generating function obtained from a recursive approach.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974775.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974775.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Extended Note on the Comparison-optimal Dual Pivot Quickselect
In this note the precise minimum number of key comparisons any dual-pivot quickselect algorithm (without sampling) needs on average is determined. The result is in the form of exact as well as asymptotic formul\ae{} of this number of a comparison-optimal algorithm. It turns out that the main terms of these asymptotic expansions coincide with the main terms of the corresponding analysis of the classical quickselect, but still---as this was shown for Yaroslavskiy quickselect---more comparisons are needed in the dual-pivot variant. The results are obtained by solving a second order differential equation for the generating function obtained from a recursive approach.