无限域上Promise vcsp的基本LP和仿射IP联合松弛

C. Viola, Stanislav Živný
{"title":"无限域上Promise vcsp的基本LP和仿射IP联合松弛","authors":"C. Viola, Stanislav Živný","doi":"10.1145/3458041","DOIUrl":null,"url":null,"abstract":"Convex relaxations have been instrumental in solvability of constraint satisfaction problems (CSPs), as well as in the three different generalisations of CSPs: valued CSPs, infinite-domain CSPs, and most recently promise CSPs. In this work, we extend an existing tractability result to the three generalisations of CSPs combined: We give a sufficient condition for the combined basic linear programming and affine integer programming relaxation for exact solvability of promise valued CSPs over infinite-domains. This extends a result of Brakensiek and Guruswami (SODA’20) for promise (non-valued) CSPs (on finite domains).","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Combined Basic LP and Affine IP Relaxation for Promise VCSPs on Infinite Domains\",\"authors\":\"C. Viola, Stanislav Živný\",\"doi\":\"10.1145/3458041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convex relaxations have been instrumental in solvability of constraint satisfaction problems (CSPs), as well as in the three different generalisations of CSPs: valued CSPs, infinite-domain CSPs, and most recently promise CSPs. In this work, we extend an existing tractability result to the three generalisations of CSPs combined: We give a sufficient condition for the combined basic linear programming and affine integer programming relaxation for exact solvability of promise valued CSPs over infinite-domains. This extends a result of Brakensiek and Guruswami (SODA’20) for promise (non-valued) CSPs (on finite domains).\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3458041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

凸松弛在约束满足问题(csp)的可解性以及csp的三种不同推广中发挥了重要作用:有值csp,无限域csp和最近的承诺csp。在本文中,我们将已有的可跟踪性结果推广到csp组合的三种推广:我们给出了承诺值csp组合的基本线性规划和仿射整数规划松弛在无限域上精确可解的充分条件。这扩展了Brakensiek和Guruswami (SODA ' 20)关于承诺(无值)csp(有限域)的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Combined Basic LP and Affine IP Relaxation for Promise VCSPs on Infinite Domains
Convex relaxations have been instrumental in solvability of constraint satisfaction problems (CSPs), as well as in the three different generalisations of CSPs: valued CSPs, infinite-domain CSPs, and most recently promise CSPs. In this work, we extend an existing tractability result to the three generalisations of CSPs combined: We give a sufficient condition for the combined basic linear programming and affine integer programming relaxation for exact solvability of promise valued CSPs over infinite-domains. This extends a result of Brakensiek and Guruswami (SODA’20) for promise (non-valued) CSPs (on finite domains).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信