使用皮肤颜色分割和训练的级联人脸检测器从彩色图像快速缩放不变多视图人脸检测

Ashish Gor, Malay S. Bhatt
{"title":"使用皮肤颜色分割和训练的级联人脸检测器从彩色图像快速缩放不变多视图人脸检测","authors":"Ashish Gor, Malay S. Bhatt","doi":"10.1109/ICACEA.2015.7164779","DOIUrl":null,"url":null,"abstract":"Face detection is important step in face recognition, expression analysis, security, surveillance which has challenges due to multiple scales, views, rotations of faces & false background objects. Skin color segmentation, connected component extraction & correlation analysis on image is done to reduce search space & to improve detection rate. Cascaded face detectors are trained using Viola & Jone's Adaboost based Machine learning algorithm for each possible range of views & possible rotations. Segmented regions of 16*16 sizes are given to Cascaded face detectors to verify the presence of face. Experimental results show that it has very good detection rate for frontal & remarkable rate non-frontal, multi-view faces with negligible time duration in poor background/weather/lighting conditions.","PeriodicalId":202893,"journal":{"name":"2015 International Conference on Advances in Computer Engineering and Applications","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast scale invariant multi-view face detection from color images using skin color segmentation & trained cascaded face detectors\",\"authors\":\"Ashish Gor, Malay S. Bhatt\",\"doi\":\"10.1109/ICACEA.2015.7164779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection is important step in face recognition, expression analysis, security, surveillance which has challenges due to multiple scales, views, rotations of faces & false background objects. Skin color segmentation, connected component extraction & correlation analysis on image is done to reduce search space & to improve detection rate. Cascaded face detectors are trained using Viola & Jone's Adaboost based Machine learning algorithm for each possible range of views & possible rotations. Segmented regions of 16*16 sizes are given to Cascaded face detectors to verify the presence of face. Experimental results show that it has very good detection rate for frontal & remarkable rate non-frontal, multi-view faces with negligible time duration in poor background/weather/lighting conditions.\",\"PeriodicalId\":202893,\"journal\":{\"name\":\"2015 International Conference on Advances in Computer Engineering and Applications\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advances in Computer Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACEA.2015.7164779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advances in Computer Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACEA.2015.7164779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人脸检测是人脸识别、表情分析、安全、监控等领域的重要环节,但由于人脸的多尺度、视角、旋转和虚假背景对象等问题,人脸检测面临着挑战。通过对图像进行肤色分割、连通分量提取和相关性分析,减少了搜索空间,提高了检测率。级联人脸检测器使用Viola & jones的基于Adaboost的机器学习算法对每个可能的视图范围和可能的旋转进行训练。将16*16大小的分割区域交给级联人脸检测器来验证人脸的存在。实验结果表明,在恶劣的背景/天气/光照条件下,该算法对持续时间可忽略不计的正面人脸和显著率的非正面多视角人脸具有非常好的检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast scale invariant multi-view face detection from color images using skin color segmentation & trained cascaded face detectors
Face detection is important step in face recognition, expression analysis, security, surveillance which has challenges due to multiple scales, views, rotations of faces & false background objects. Skin color segmentation, connected component extraction & correlation analysis on image is done to reduce search space & to improve detection rate. Cascaded face detectors are trained using Viola & Jone's Adaboost based Machine learning algorithm for each possible range of views & possible rotations. Segmented regions of 16*16 sizes are given to Cascaded face detectors to verify the presence of face. Experimental results show that it has very good detection rate for frontal & remarkable rate non-frontal, multi-view faces with negligible time duration in poor background/weather/lighting conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信