眼动生物识别的度量学习方法

D. Lohr, Henry K. Griffith, Samantha Aziz, Oleg V. Komogortsev
{"title":"眼动生物识别的度量学习方法","authors":"D. Lohr, Henry K. Griffith, Samantha Aziz, Oleg V. Komogortsev","doi":"10.1109/IJCB48548.2020.9304859","DOIUrl":null,"url":null,"abstract":"Metric learning is a valuable technique for enabling the ongoing enrollment of new users within biometric systems. While this approach has been heavily employed for other biometric modalities such as facial recognition, applications to eye movements have only recently been explored. This manuscript further investigates the application of metric learning to eye movement biometrics. A set of three multilayer perceptron networks are trained for embedding feature vectors describing three classes of eye movements: fixations, saccades, and post-saccadic oscillations. The network is validated on a dataset containing eye movement traces of 269 subjects recorded during a reading task. The proposed algorithm is benchmarked against a previously introduced statistical biometric approach. While mean equal error rate (EER) was increased versus the benchmark method, the proposed technique demonstrated lower dispersion in EER across the four test folds considered herein.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Metric Learning Approach to Eye Movement Biometrics\",\"authors\":\"D. Lohr, Henry K. Griffith, Samantha Aziz, Oleg V. Komogortsev\",\"doi\":\"10.1109/IJCB48548.2020.9304859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metric learning is a valuable technique for enabling the ongoing enrollment of new users within biometric systems. While this approach has been heavily employed for other biometric modalities such as facial recognition, applications to eye movements have only recently been explored. This manuscript further investigates the application of metric learning to eye movement biometrics. A set of three multilayer perceptron networks are trained for embedding feature vectors describing three classes of eye movements: fixations, saccades, and post-saccadic oscillations. The network is validated on a dataset containing eye movement traces of 269 subjects recorded during a reading task. The proposed algorithm is benchmarked against a previously introduced statistical biometric approach. While mean equal error rate (EER) was increased versus the benchmark method, the proposed technique demonstrated lower dispersion in EER across the four test folds considered herein.\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

度量学习是一种有价值的技术,可以在生物识别系统中持续登记新用户。虽然这种方法已被大量应用于面部识别等其他生物识别模式,但直到最近才开始探索将其应用于眼球运动。本文进一步探讨了度量学习在眼动生物识别中的应用。一组三个多层感知器网络被训练用于嵌入描述三类眼球运动的特征向量:注视、扫视和后扫视振荡。该网络在包含269名受试者在阅读任务中记录的眼球运动轨迹的数据集上进行验证。提出的算法是针对以前介绍的统计生物计量方法的基准。虽然平均误差率(EER)与基准方法相比有所增加,但所提出的技术在本文所考虑的四个测试折叠中显示出更低的EER色散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Metric Learning Approach to Eye Movement Biometrics
Metric learning is a valuable technique for enabling the ongoing enrollment of new users within biometric systems. While this approach has been heavily employed for other biometric modalities such as facial recognition, applications to eye movements have only recently been explored. This manuscript further investigates the application of metric learning to eye movement biometrics. A set of three multilayer perceptron networks are trained for embedding feature vectors describing three classes of eye movements: fixations, saccades, and post-saccadic oscillations. The network is validated on a dataset containing eye movement traces of 269 subjects recorded during a reading task. The proposed algorithm is benchmarked against a previously introduced statistical biometric approach. While mean equal error rate (EER) was increased versus the benchmark method, the proposed technique demonstrated lower dispersion in EER across the four test folds considered herein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信