Cai Kunbao, Jiang Ze-jia, Zhou Shouchang, Yang Ruifang, Yu Jihui
{"title":"一种分析生物组织粘弹性动力学的有限元方法","authors":"Cai Kunbao, Jiang Ze-jia, Zhou Shouchang, Yang Ruifang, Yu Jihui","doi":"10.1109/IEMBS.1998.746076","DOIUrl":null,"url":null,"abstract":"A novel finite-element method for analyzing viscoelastic dynamics in biological tissues through using two important conclusions of linear viscoelastic models and applying electrical-network theory and filtering techniques is successfully derived. The complexity of viscoelastic materials can be either as simple as isotropic or more and more complex up to extremely anisotropic. The linear viscoelastic models describing mechanical behaviors of biological tissues can be an arbitrary combination of two-kind elements and three-type fundamental models. It is confirmed that a general, systematic, and highly precise finite-element fast analysis method, that is suitable for analyzing the dynamic responses of biological tissues and engineering materials with linear viscoelastic models, can be derived.","PeriodicalId":156581,"journal":{"name":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel finite element method for analyzing viscoelastic dynamics in biological tissues\",\"authors\":\"Cai Kunbao, Jiang Ze-jia, Zhou Shouchang, Yang Ruifang, Yu Jihui\",\"doi\":\"10.1109/IEMBS.1998.746076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel finite-element method for analyzing viscoelastic dynamics in biological tissues through using two important conclusions of linear viscoelastic models and applying electrical-network theory and filtering techniques is successfully derived. The complexity of viscoelastic materials can be either as simple as isotropic or more and more complex up to extremely anisotropic. The linear viscoelastic models describing mechanical behaviors of biological tissues can be an arbitrary combination of two-kind elements and three-type fundamental models. It is confirmed that a general, systematic, and highly precise finite-element fast analysis method, that is suitable for analyzing the dynamic responses of biological tissues and engineering materials with linear viscoelastic models, can be derived.\",\"PeriodicalId\":156581,\"journal\":{\"name\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1998.746076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1998.746076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel finite element method for analyzing viscoelastic dynamics in biological tissues
A novel finite-element method for analyzing viscoelastic dynamics in biological tissues through using two important conclusions of linear viscoelastic models and applying electrical-network theory and filtering techniques is successfully derived. The complexity of viscoelastic materials can be either as simple as isotropic or more and more complex up to extremely anisotropic. The linear viscoelastic models describing mechanical behaviors of biological tissues can be an arbitrary combination of two-kind elements and three-type fundamental models. It is confirmed that a general, systematic, and highly precise finite-element fast analysis method, that is suitable for analyzing the dynamic responses of biological tissues and engineering materials with linear viscoelastic models, can be derived.