神经网络在集选择问题求解中的数学分析

C. Jeffries
{"title":"神经网络在集选择问题求解中的数学分析","authors":"C. Jeffries","doi":"10.1109/ISIC.1988.65512","DOIUrl":null,"url":null,"abstract":"The generalized neural network model of M. Cohen and S. Grossberg (1983) has been studied by many authors using Lyapunov-type functions. As an alternative, the author treats closely related dynamical systems (the gain functions are piecewise linear) with other dynamical-systems-theory machinery. It is shown that, by using a certain perturbation scheme, one can use such models with piecewise linear gain functions to solve a variety of set selection problems.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mathematical analysis of neural networks used in the solution of set selection problems\",\"authors\":\"C. Jeffries\",\"doi\":\"10.1109/ISIC.1988.65512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized neural network model of M. Cohen and S. Grossberg (1983) has been studied by many authors using Lyapunov-type functions. As an alternative, the author treats closely related dynamical systems (the gain functions are piecewise linear) with other dynamical-systems-theory machinery. It is shown that, by using a certain perturbation scheme, one can use such models with piecewise linear gain functions to solve a variety of set selection problems.<<ETX>>\",\"PeriodicalId\":155616,\"journal\":{\"name\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1988.65512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

M. Cohen和S. Grossberg(1983)的广义神经网络模型已经被许多作者使用lyapunov型函数进行了研究。作为一种选择,作者将密切相关的动力系统(增益函数是分段线性的)与其他动力系统理论机制一起处理。结果表明,通过使用一定的扰动格式,可以使用这种具有分段线性增益函数的模型来解决各种集选择问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical analysis of neural networks used in the solution of set selection problems
The generalized neural network model of M. Cohen and S. Grossberg (1983) has been studied by many authors using Lyapunov-type functions. As an alternative, the author treats closely related dynamical systems (the gain functions are piecewise linear) with other dynamical-systems-theory machinery. It is shown that, by using a certain perturbation scheme, one can use such models with piecewise linear gain functions to solve a variety of set selection problems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信