连续相变

J. Sethna
{"title":"连续相变","authors":"J. Sethna","doi":"10.1093/oso/9780198865247.003.0012","DOIUrl":null,"url":null,"abstract":"This chapter analyzes systems with emergent scale invariance -- fractal, self-similar behavior -- by developing the renormalization group. The renormalization group is an amazing abstraction. It describes the flow of the laws governing the system as one coarse-grains -- blurring out the short-distance or short-time details. In the huge space of possible systems (experimental and theoretical), a fixed point of the renormalization group will be the same after blurring and shrinking -- implying emergent scale invariance, a fractal self-similarity. The points which flow into the fixed point share its properties under rescaling -- implying universality, with behavior shared by theory and a wide variety of different experimental systems. The renormalization group also predicts universal power laws and universal functions, describing all behavior on long length and/or time scales. Exercises explore applications to the Ising model, the onset of lasing, superconductors, the onset of chaos, percolation, crackling noise and avalanches, earthquakes, random walks and diffusion, chemical reaction rate theory, and extreme value statistics.","PeriodicalId":218123,"journal":{"name":"Statistical Mechanics: Entropy, Order Parameters, and Complexity","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous phase transitions\",\"authors\":\"J. Sethna\",\"doi\":\"10.1093/oso/9780198865247.003.0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter analyzes systems with emergent scale invariance -- fractal, self-similar behavior -- by developing the renormalization group. The renormalization group is an amazing abstraction. It describes the flow of the laws governing the system as one coarse-grains -- blurring out the short-distance or short-time details. In the huge space of possible systems (experimental and theoretical), a fixed point of the renormalization group will be the same after blurring and shrinking -- implying emergent scale invariance, a fractal self-similarity. The points which flow into the fixed point share its properties under rescaling -- implying universality, with behavior shared by theory and a wide variety of different experimental systems. The renormalization group also predicts universal power laws and universal functions, describing all behavior on long length and/or time scales. Exercises explore applications to the Ising model, the onset of lasing, superconductors, the onset of chaos, percolation, crackling noise and avalanches, earthquakes, random walks and diffusion, chemical reaction rate theory, and extreme value statistics.\",\"PeriodicalId\":218123,\"journal\":{\"name\":\"Statistical Mechanics: Entropy, Order Parameters, and Complexity\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Mechanics: Entropy, Order Parameters, and Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198865247.003.0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Mechanics: Entropy, Order Parameters, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198865247.003.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章通过发展重整化群来分析具有紧急尺度不变性——分形、自相似行为——的系统。重整化群是一个惊人的抽象。它将控制系统的规律描述为一种粗颗粒——模糊了短距离或短时间的细节。在可能的系统(实验和理论)的巨大空间中,重整化群的一个不动点在模糊和缩小之后是相同的——这意味着新兴的尺度不变性,一种分形的自相似。流入固定点的点在重标度下共享其属性——这意味着普遍性,具有理论和各种不同实验系统共享的行为。重整化组还预测了普遍的幂律和普遍的函数,描述了长长度和/或时间尺度上的所有行为。练习探索应用到伊辛模型,激光的开始,超导体,混沌的开始,渗透,噼里啪啦的噪音和雪崩,地震,随机漫步和扩散,化学反应速率理论,和极值统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous phase transitions
This chapter analyzes systems with emergent scale invariance -- fractal, self-similar behavior -- by developing the renormalization group. The renormalization group is an amazing abstraction. It describes the flow of the laws governing the system as one coarse-grains -- blurring out the short-distance or short-time details. In the huge space of possible systems (experimental and theoretical), a fixed point of the renormalization group will be the same after blurring and shrinking -- implying emergent scale invariance, a fractal self-similarity. The points which flow into the fixed point share its properties under rescaling -- implying universality, with behavior shared by theory and a wide variety of different experimental systems. The renormalization group also predicts universal power laws and universal functions, describing all behavior on long length and/or time scales. Exercises explore applications to the Ising model, the onset of lasing, superconductors, the onset of chaos, percolation, crackling noise and avalanches, earthquakes, random walks and diffusion, chemical reaction rate theory, and extreme value statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信