基于扩展MVEM的UKF估计器的开发

J. Vasu, A. K. Deb, S. Mukhopadhyay
{"title":"基于扩展MVEM的UKF估计器的开发","authors":"J. Vasu, A. K. Deb, S. Mukhopadhyay","doi":"10.1109/INDCON.2011.6139369","DOIUrl":null,"url":null,"abstract":"Mean Value Engine Models (MVEM) have been used to model the averaged dynamics of an automobile engine system for automotive control and fault diagnosis. For these purposes, it is common to estimate states of interest given noisy measurements using state observers. Since the measurements could be noisy and asynchronous, they should be suitably post-processed before feeding them to a state observer. In this paper, an Unscented Kalman Filter (UKF) was developed for an Extended MVEM and a suitable post-processing algorithm for the measurements has been described.","PeriodicalId":425080,"journal":{"name":"2011 Annual IEEE India Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of Extended MVEM based UKF estimators\",\"authors\":\"J. Vasu, A. K. Deb, S. Mukhopadhyay\",\"doi\":\"10.1109/INDCON.2011.6139369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mean Value Engine Models (MVEM) have been used to model the averaged dynamics of an automobile engine system for automotive control and fault diagnosis. For these purposes, it is common to estimate states of interest given noisy measurements using state observers. Since the measurements could be noisy and asynchronous, they should be suitably post-processed before feeding them to a state observer. In this paper, an Unscented Kalman Filter (UKF) was developed for an Extended MVEM and a suitable post-processing algorithm for the measurements has been described.\",\"PeriodicalId\":425080,\"journal\":{\"name\":\"2011 Annual IEEE India Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Annual IEEE India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2011.6139369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2011.6139369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用均值发动机模型(MVEM)对汽车发动机系统的平均动力学进行建模,用于汽车控制和故障诊断。出于这些目的,通常使用状态观测器来估计给定噪声测量的感兴趣状态。由于测量可能是有噪声的和异步的,因此在将它们提供给状态观察器之前,应该对它们进行适当的后处理。本文提出了一种适用于扩展MVEM的无气味卡尔曼滤波器(UKF),并描述了一种适用于测量的后处理算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Extended MVEM based UKF estimators
Mean Value Engine Models (MVEM) have been used to model the averaged dynamics of an automobile engine system for automotive control and fault diagnosis. For these purposes, it is common to estimate states of interest given noisy measurements using state observers. Since the measurements could be noisy and asynchronous, they should be suitably post-processed before feeding them to a state observer. In this paper, an Unscented Kalman Filter (UKF) was developed for an Extended MVEM and a suitable post-processing algorithm for the measurements has been described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信