基于armv8的多核架构中小规模矩阵乘法的表征

Weiling Yang, Jianbin Fang, Dezun Dong
{"title":"基于armv8的多核架构中小规模矩阵乘法的表征","authors":"Weiling Yang, Jianbin Fang, Dezun Dong","doi":"10.1109/IPDPS49936.2021.00019","DOIUrl":null,"url":null,"abstract":"General Matrix Multiplication (GEMM) is a key subroutine in high-performance computing. There is a large body of work on evaluating and optimizing large-scale matrix multiplication, but how well the small-scale matrix multiplication (SMM) performs is largely unknown, especially for the ARMv8-based many-core architectures. In this work, we evaluate and characterize the performance of SMM subroutines on Phytium 2000 +, an ARMv8-based 64-core architecture. The evaluation work is extensively performed with the mainstream open-source libraries including OpenBLAS, BLIS, BALSFEO, and Eigen. Given various experimental settings, we observe how well the small-scale GEMM routines perform on Phytium 2000 +, and then discuss the impacting factors behind the performance behaviours of SMM. Built on such a basis, we shed light on the performance bottlenecks and practical optimizations on SMM from various angles: (1) mitigating the data packing overhead, (2) processing the edge cases properly, (3) selecting a suitable micro-kernel, and (4) adopting a right parallelization method. The result of our work facilitates users to develop efficient SMM optimizations on ARMv8-based many-core architectures, and embed them into real-world applications.","PeriodicalId":372234,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characterizing Small-Scale Matrix Multiplications on ARMv8-based Many-Core Architectures\",\"authors\":\"Weiling Yang, Jianbin Fang, Dezun Dong\",\"doi\":\"10.1109/IPDPS49936.2021.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General Matrix Multiplication (GEMM) is a key subroutine in high-performance computing. There is a large body of work on evaluating and optimizing large-scale matrix multiplication, but how well the small-scale matrix multiplication (SMM) performs is largely unknown, especially for the ARMv8-based many-core architectures. In this work, we evaluate and characterize the performance of SMM subroutines on Phytium 2000 +, an ARMv8-based 64-core architecture. The evaluation work is extensively performed with the mainstream open-source libraries including OpenBLAS, BLIS, BALSFEO, and Eigen. Given various experimental settings, we observe how well the small-scale GEMM routines perform on Phytium 2000 +, and then discuss the impacting factors behind the performance behaviours of SMM. Built on such a basis, we shed light on the performance bottlenecks and practical optimizations on SMM from various angles: (1) mitigating the data packing overhead, (2) processing the edge cases properly, (3) selecting a suitable micro-kernel, and (4) adopting a right parallelization method. The result of our work facilitates users to develop efficient SMM optimizations on ARMv8-based many-core architectures, and embed them into real-world applications.\",\"PeriodicalId\":372234,\"journal\":{\"name\":\"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS49936.2021.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS49936.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通用矩阵乘法(GEMM)是高性能计算中的一个关键子程序。有大量的工作是评估和优化大规模矩阵乘法,但是小规模矩阵乘法(SMM)的性能如何在很大程度上是未知的,特别是对于基于armv8的多核体系结构。在这项工作中,我们评估和表征了SMM子程序在基于armv8的64核架构Phytium 2000 +上的性能。评估工作广泛使用主流开源库,包括OpenBLAS、BLIS、BALSFEO和Eigen。在不同的实验环境下,我们观察了小型GEMM程序在Phytium 2000 +上的表现,并讨论了SMM性能行为背后的影响因素。在此基础上,我们从多个角度揭示了SMM的性能瓶颈和实际优化:(1)减轻数据打包开销,(2)正确处理边缘情况,(3)选择合适的微内核,(4)采用正确的并行化方法。我们的工作成果有助于用户在基于armv8的多核架构上开发高效的SMM优化,并将其嵌入到实际应用程序中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing Small-Scale Matrix Multiplications on ARMv8-based Many-Core Architectures
General Matrix Multiplication (GEMM) is a key subroutine in high-performance computing. There is a large body of work on evaluating and optimizing large-scale matrix multiplication, but how well the small-scale matrix multiplication (SMM) performs is largely unknown, especially for the ARMv8-based many-core architectures. In this work, we evaluate and characterize the performance of SMM subroutines on Phytium 2000 +, an ARMv8-based 64-core architecture. The evaluation work is extensively performed with the mainstream open-source libraries including OpenBLAS, BLIS, BALSFEO, and Eigen. Given various experimental settings, we observe how well the small-scale GEMM routines perform on Phytium 2000 +, and then discuss the impacting factors behind the performance behaviours of SMM. Built on such a basis, we shed light on the performance bottlenecks and practical optimizations on SMM from various angles: (1) mitigating the data packing overhead, (2) processing the edge cases properly, (3) selecting a suitable micro-kernel, and (4) adopting a right parallelization method. The result of our work facilitates users to develop efficient SMM optimizations on ARMv8-based many-core architectures, and embed them into real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信