多项式自适应滤波器分析的新见解

Charles W. Therrien, W. K. Jenkins
{"title":"多项式自适应滤波器分析的新见解","authors":"Charles W. Therrien, W. K. Jenkins","doi":"10.1109/DSPWS.1996.555541","DOIUrl":null,"url":null,"abstract":"New results are reported on the structure of the correlation matrix for the data vector in Volterra second order adaptive filters for a general colored Gaussian input process. The structure becomes apparent when the input to the quadratic part of the filter is represented as a Kronecker product of the vector of terms to the linear part, and the redundant terms in the product are not removed. This approach leads to bounds on the eigenvalues of the correlation matrix which characterize the performance of LMS algorithms, and suggestions for possibly improved nonlinear adaptive filtering algorithms.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"New insights in the analysis of polynomial adaptive filters\",\"authors\":\"Charles W. Therrien, W. K. Jenkins\",\"doi\":\"10.1109/DSPWS.1996.555541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New results are reported on the structure of the correlation matrix for the data vector in Volterra second order adaptive filters for a general colored Gaussian input process. The structure becomes apparent when the input to the quadratic part of the filter is represented as a Kronecker product of the vector of terms to the linear part, and the redundant terms in the product are not removed. This approach leads to bounds on the eigenvalues of the correlation matrix which characterize the performance of LMS algorithms, and suggestions for possibly improved nonlinear adaptive filtering algorithms.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文报道了用于一般有色高斯输入过程的Volterra二阶自适应滤波器中数据向量相关矩阵结构的新结果。当滤波器的二次部分的输入被表示为线性部分的项向量的Kronecker积时,该结构变得明显,并且乘积中的冗余项没有被删除。该方法给出了表征LMS算法性能的相关矩阵特征值的边界,并对可能改进的非线性自适应滤波算法提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New insights in the analysis of polynomial adaptive filters
New results are reported on the structure of the correlation matrix for the data vector in Volterra second order adaptive filters for a general colored Gaussian input process. The structure becomes apparent when the input to the quadratic part of the filter is represented as a Kronecker product of the vector of terms to the linear part, and the redundant terms in the product are not removed. This approach leads to bounds on the eigenvalues of the correlation matrix which characterize the performance of LMS algorithms, and suggestions for possibly improved nonlinear adaptive filtering algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信