Cameron P. Ridgewell, Robert J. Griffin, T. Furukawa, B. Lattimer
{"title":"多接触全身控制摩擦约束的在线估计","authors":"Cameron P. Ridgewell, Robert J. Griffin, T. Furukawa, B. Lattimer","doi":"10.1109/HUMANOIDS.2017.8246896","DOIUrl":null,"url":null,"abstract":"This paper proposes a technique for experimentally approximating surface friction coefficients at contacttime in multi-contact applications. Unlike other multi-contact formulations, our approach does not assume a standard friction coefficient, and instead induces slip in a multi-contact oriented humanoid to estimate available friction force. Incrementally increased tangential force, measured with ankle-mounted force-torque sensors, is used as the basis for slip detection and friction coefficient estimation at the hand. This technique is validated in simulation on a simple three-link model and extended to the humanoid robot platform ESCHER. Approximated friction values are utilized by the robot's whole body controller to prevent multi-contact end effector slip.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Online estimation of friction constraints for multi-contact whole body control\",\"authors\":\"Cameron P. Ridgewell, Robert J. Griffin, T. Furukawa, B. Lattimer\",\"doi\":\"10.1109/HUMANOIDS.2017.8246896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a technique for experimentally approximating surface friction coefficients at contacttime in multi-contact applications. Unlike other multi-contact formulations, our approach does not assume a standard friction coefficient, and instead induces slip in a multi-contact oriented humanoid to estimate available friction force. Incrementally increased tangential force, measured with ankle-mounted force-torque sensors, is used as the basis for slip detection and friction coefficient estimation at the hand. This technique is validated in simulation on a simple three-link model and extended to the humanoid robot platform ESCHER. Approximated friction values are utilized by the robot's whole body controller to prevent multi-contact end effector slip.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online estimation of friction constraints for multi-contact whole body control
This paper proposes a technique for experimentally approximating surface friction coefficients at contacttime in multi-contact applications. Unlike other multi-contact formulations, our approach does not assume a standard friction coefficient, and instead induces slip in a multi-contact oriented humanoid to estimate available friction force. Incrementally increased tangential force, measured with ankle-mounted force-torque sensors, is used as the basis for slip detection and friction coefficient estimation at the hand. This technique is validated in simulation on a simple three-link model and extended to the humanoid robot platform ESCHER. Approximated friction values are utilized by the robot's whole body controller to prevent multi-contact end effector slip.