{"title":"多谱风险约束下的投资组合选择","authors":"Carlos Abad, G. Iyengar","doi":"10.2139/ssrn.2175038","DOIUrl":null,"url":null,"abstract":"We propose an iterative gradient-based algorithm to efficiently solve the portfolio selection problem with multiple spectral risk constraints. Since the conditional value at risk (CVaR) is a special case of the spectral risk measure, our algorithm solves portfolio selection problems with multiple CVaR constraints. In each step, the algorithm solves very simple separable convex quadratic programs; hence, we show that the spectral risk constrained portfolio selection problem can be solved using the technology developed for solving mean-variance problems. The algorithm extends to the case where the objective is a weighted sum of the mean return and either a weighted combination or the maximum of a set of spectral risk measures. We report numerical results that show that our proposed algorithm is very efficient; it is at least one order of magnitude faster than the state-of-the-art general purpose solver for all practical instances. One can leverage this efficiency to be robust against model risk by including constraints with respect to several different risk models.","PeriodicalId":406780,"journal":{"name":"POL: Resource Financing Strategies (Topic)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Portfolio Selection with Multiple Spectral Risk Constraints\",\"authors\":\"Carlos Abad, G. Iyengar\",\"doi\":\"10.2139/ssrn.2175038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an iterative gradient-based algorithm to efficiently solve the portfolio selection problem with multiple spectral risk constraints. Since the conditional value at risk (CVaR) is a special case of the spectral risk measure, our algorithm solves portfolio selection problems with multiple CVaR constraints. In each step, the algorithm solves very simple separable convex quadratic programs; hence, we show that the spectral risk constrained portfolio selection problem can be solved using the technology developed for solving mean-variance problems. The algorithm extends to the case where the objective is a weighted sum of the mean return and either a weighted combination or the maximum of a set of spectral risk measures. We report numerical results that show that our proposed algorithm is very efficient; it is at least one order of magnitude faster than the state-of-the-art general purpose solver for all practical instances. One can leverage this efficiency to be robust against model risk by including constraints with respect to several different risk models.\",\"PeriodicalId\":406780,\"journal\":{\"name\":\"POL: Resource Financing Strategies (Topic)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"POL: Resource Financing Strategies (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2175038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"POL: Resource Financing Strategies (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2175038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Portfolio Selection with Multiple Spectral Risk Constraints
We propose an iterative gradient-based algorithm to efficiently solve the portfolio selection problem with multiple spectral risk constraints. Since the conditional value at risk (CVaR) is a special case of the spectral risk measure, our algorithm solves portfolio selection problems with multiple CVaR constraints. In each step, the algorithm solves very simple separable convex quadratic programs; hence, we show that the spectral risk constrained portfolio selection problem can be solved using the technology developed for solving mean-variance problems. The algorithm extends to the case where the objective is a weighted sum of the mean return and either a weighted combination or the maximum of a set of spectral risk measures. We report numerical results that show that our proposed algorithm is very efficient; it is at least one order of magnitude faster than the state-of-the-art general purpose solver for all practical instances. One can leverage this efficiency to be robust against model risk by including constraints with respect to several different risk models.