AFExplorer:可视分析和交互式选择音频功能

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lei Wang, Guodao Sun, Yunchao Wang, Ji Ma, Xiaomin Zhao, Ronghua Liang
{"title":"AFExplorer:可视分析和交互式选择音频功能","authors":"Lei Wang,&nbsp;Guodao Sun,&nbsp;Yunchao Wang,&nbsp;Ji Ma,&nbsp;Xiaomin Zhao,&nbsp;Ronghua Liang","doi":"10.1016/j.visinf.2022.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Acoustic quality detection is vital in the manufactured products quality control field since it represents the conditions of machines or products. Recent work employed machine learning models in manufactured audio data to detect anomalous patterns. A major challenge is how to select applicable audio features to meliorate model’s accuracy and precision. To relax this challenge, we extract and analyze three audio feature types including Time Domain Feature, Frequency Domain Feature, and Cepstrum Feature to help identify the potential linear and non-linear relationships. In addition, we design a visual analysis system, namely AFExplorer, to assist data scientists in extracting audio features and selecting potential feature combinations. AFExplorer integrates four main views to present detailed distribution and relevance of the audio features, which helps users observe the impact of features visually in the feature selection. We perform the case study with AFExplore according to the ToyADMOS and MIMII Dataset to demonstrate the usability and effectiveness of the proposed system.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 1","pages":"Pages 47-55"},"PeriodicalIF":3.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000110/pdfft?md5=2e19336a69c58e5911898665e895ab79&pid=1-s2.0-S2468502X22000110-main.pdf","citationCount":"6","resultStr":"{\"title\":\"AFExplorer: Visual analysis and interactive selection of audio features\",\"authors\":\"Lei Wang,&nbsp;Guodao Sun,&nbsp;Yunchao Wang,&nbsp;Ji Ma,&nbsp;Xiaomin Zhao,&nbsp;Ronghua Liang\",\"doi\":\"10.1016/j.visinf.2022.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acoustic quality detection is vital in the manufactured products quality control field since it represents the conditions of machines or products. Recent work employed machine learning models in manufactured audio data to detect anomalous patterns. A major challenge is how to select applicable audio features to meliorate model’s accuracy and precision. To relax this challenge, we extract and analyze three audio feature types including Time Domain Feature, Frequency Domain Feature, and Cepstrum Feature to help identify the potential linear and non-linear relationships. In addition, we design a visual analysis system, namely AFExplorer, to assist data scientists in extracting audio features and selecting potential feature combinations. AFExplorer integrates four main views to present detailed distribution and relevance of the audio features, which helps users observe the impact of features visually in the feature selection. We perform the case study with AFExplore according to the ToyADMOS and MIMII Dataset to demonstrate the usability and effectiveness of the proposed system.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"6 1\",\"pages\":\"Pages 47-55\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000110/pdfft?md5=2e19336a69c58e5911898665e895ab79&pid=1-s2.0-S2468502X22000110-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000110\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000110","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6

摘要

声质量检测在制成品质量控制领域是至关重要的,因为它代表了机器或产品的状况。最近的工作在制造的音频数据中使用机器学习模型来检测异常模式。如何选择合适的音频特征来提高模型的准确性和精度是一个主要的挑战。为了缓解这一挑战,我们提取并分析了三种音频特征类型,包括时域特征、频域特征和倒频谱特征,以帮助识别潜在的线性和非线性关系。此外,我们设计了一个视觉分析系统,即AFExplorer,以帮助数据科学家提取音频特征并选择潜在的特征组合。AFExplorer集成了四个主要视图来呈现音频特性的详细分布和相关性,这有助于用户在特性选择中直观地观察特性的影响。我们根据ToyADMOS和MIMII数据集使用AFExplore进行了案例研究,以证明所提出系统的可用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AFExplorer: Visual analysis and interactive selection of audio features

Acoustic quality detection is vital in the manufactured products quality control field since it represents the conditions of machines or products. Recent work employed machine learning models in manufactured audio data to detect anomalous patterns. A major challenge is how to select applicable audio features to meliorate model’s accuracy and precision. To relax this challenge, we extract and analyze three audio feature types including Time Domain Feature, Frequency Domain Feature, and Cepstrum Feature to help identify the potential linear and non-linear relationships. In addition, we design a visual analysis system, namely AFExplorer, to assist data scientists in extracting audio features and selecting potential feature combinations. AFExplorer integrates four main views to present detailed distribution and relevance of the audio features, which helps users observe the impact of features visually in the feature selection. We perform the case study with AFExplore according to the ToyADMOS and MIMII Dataset to demonstrate the usability and effectiveness of the proposed system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信