Makwata Harun, L. George, A. Colleta, Adu A. M. Wasike
{"title":"具有狭缝效应的渔业模型的稳定性与分岔分析","authors":"Makwata Harun, L. George, A. Colleta, Adu A. M. Wasike","doi":"10.11648/J.MMA.20190401.11","DOIUrl":null,"url":null,"abstract":"We study the equilibrium point (n*, E*) of the fishery model with Allee effect in its population growth dynamics. The Allee effect is considered to be induced by the harvesting of the fish stock. The aggregated model is a set of two differential equations with the fish population and harvesting effort as the dependent variables, with the market price having been taken to evolve faster hence the aggregation from a three dimensional system to a two dimensional system. The analysis of the equilibrium point is performed by looking at three cases in which the threshold population is set at three different values; , and . Three different equilibrium solutions are obtained: A stable equilibrium, coexistence of three equilibria points with two being saddles and the other stable and the co-existence of three equilibria points with two being stable and a saddle between them. The equilibrium solutions depicts three kinds of fishery: A fishery with fish population maintained at high levels far from extinction but with little economic activity, a fishery with co-existence of an over-exploited and an under-exploited state, which is a dilemma since neither of the state supports sustainable fish resource exploitation, and a fishery that is well managed with fish population being harvested in a sustainable manner thus a balance between commercial harvesting and species existence.","PeriodicalId":340874,"journal":{"name":"Mathematical Modelling and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stability and Bifurcation Analysis of a Fishery Model with Allee Effects\",\"authors\":\"Makwata Harun, L. George, A. Colleta, Adu A. M. Wasike\",\"doi\":\"10.11648/J.MMA.20190401.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the equilibrium point (n*, E*) of the fishery model with Allee effect in its population growth dynamics. The Allee effect is considered to be induced by the harvesting of the fish stock. The aggregated model is a set of two differential equations with the fish population and harvesting effort as the dependent variables, with the market price having been taken to evolve faster hence the aggregation from a three dimensional system to a two dimensional system. The analysis of the equilibrium point is performed by looking at three cases in which the threshold population is set at three different values; , and . Three different equilibrium solutions are obtained: A stable equilibrium, coexistence of three equilibria points with two being saddles and the other stable and the co-existence of three equilibria points with two being stable and a saddle between them. The equilibrium solutions depicts three kinds of fishery: A fishery with fish population maintained at high levels far from extinction but with little economic activity, a fishery with co-existence of an over-exploited and an under-exploited state, which is a dilemma since neither of the state supports sustainable fish resource exploitation, and a fishery that is well managed with fish population being harvested in a sustainable manner thus a balance between commercial harvesting and species existence.\",\"PeriodicalId\":340874,\"journal\":{\"name\":\"Mathematical Modelling and Applications\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.MMA.20190401.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MMA.20190401.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability and Bifurcation Analysis of a Fishery Model with Allee Effects
We study the equilibrium point (n*, E*) of the fishery model with Allee effect in its population growth dynamics. The Allee effect is considered to be induced by the harvesting of the fish stock. The aggregated model is a set of two differential equations with the fish population and harvesting effort as the dependent variables, with the market price having been taken to evolve faster hence the aggregation from a three dimensional system to a two dimensional system. The analysis of the equilibrium point is performed by looking at three cases in which the threshold population is set at three different values; , and . Three different equilibrium solutions are obtained: A stable equilibrium, coexistence of three equilibria points with two being saddles and the other stable and the co-existence of three equilibria points with two being stable and a saddle between them. The equilibrium solutions depicts three kinds of fishery: A fishery with fish population maintained at high levels far from extinction but with little economic activity, a fishery with co-existence of an over-exploited and an under-exploited state, which is a dilemma since neither of the state supports sustainable fish resource exploitation, and a fishery that is well managed with fish population being harvested in a sustainable manner thus a balance between commercial harvesting and species existence.