{"title":"可能性网络:MAP查询与计算分析","authors":"S. Benferhat, Amélie Levray, Karim Tabia","doi":"10.1109/ICTAI.2018.00142","DOIUrl":null,"url":null,"abstract":"Possibilistic networks are powerful graphical uncertainty representations based on possibility theory. This paper analyzes the computational complexity of querying min-based and product-based possibilistic networks. It particularly focuses on a very common kind of queries: computing maximum a posteriori explanation (MAP). The main result of the paper is to show that the decision problem of answering MAP queries in both min-based and product-based possibilistic networks is NP-complete. Such computational complexity results represent an advantage of possibilistic networks over probabilistic networks since MAP querying is NP^PP -complete in probabilistic Bayesian networks. We provide the proof based on reduction from the 3SAT decision problem to MAP querying possibilistic networks decision problem. As well as reductions that are useful for implementation of MAP queries using SAT solvers.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Possibilistic Networks: MAP Query and Computational Analysis\",\"authors\":\"S. Benferhat, Amélie Levray, Karim Tabia\",\"doi\":\"10.1109/ICTAI.2018.00142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Possibilistic networks are powerful graphical uncertainty representations based on possibility theory. This paper analyzes the computational complexity of querying min-based and product-based possibilistic networks. It particularly focuses on a very common kind of queries: computing maximum a posteriori explanation (MAP). The main result of the paper is to show that the decision problem of answering MAP queries in both min-based and product-based possibilistic networks is NP-complete. Such computational complexity results represent an advantage of possibilistic networks over probabilistic networks since MAP querying is NP^PP -complete in probabilistic Bayesian networks. We provide the proof based on reduction from the 3SAT decision problem to MAP querying possibilistic networks decision problem. As well as reductions that are useful for implementation of MAP queries using SAT solvers.\",\"PeriodicalId\":254686,\"journal\":{\"name\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2018.00142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Possibilistic Networks: MAP Query and Computational Analysis
Possibilistic networks are powerful graphical uncertainty representations based on possibility theory. This paper analyzes the computational complexity of querying min-based and product-based possibilistic networks. It particularly focuses on a very common kind of queries: computing maximum a posteriori explanation (MAP). The main result of the paper is to show that the decision problem of answering MAP queries in both min-based and product-based possibilistic networks is NP-complete. Such computational complexity results represent an advantage of possibilistic networks over probabilistic networks since MAP querying is NP^PP -complete in probabilistic Bayesian networks. We provide the proof based on reduction from the 3SAT decision problem to MAP querying possibilistic networks decision problem. As well as reductions that are useful for implementation of MAP queries using SAT solvers.