分离自动关系

Pablo Barcel'o, Diego Figueira, Rémi Morvan
{"title":"分离自动关系","authors":"Pablo Barcel'o, Diego Figueira, Rémi Morvan","doi":"10.48550/arXiv.2305.08727","DOIUrl":null,"url":null,"abstract":"We study the separability problem for automatic relations (i.e., relations on finite words definable by synchronous automata) in terms of recognizable relations (i.e., finite unions of products of regular languages). This problem takes as input two automatic relations $R$ and $R'$, and asks if there exists a recognizable relation $S$ that contains $R$ and does not intersect $R'$. We show this problem to be undecidable when the number of products allowed in the recognizable relation is fixed. In particular, checking if there exists a recognizable relation $S$ with at most $k$ products of regular languages that separates $R$ from $R'$ is undecidable, for each fixed $k \\geq 2$. Our proofs reveal tight connections, of independent interest, between the separability problem and the finite coloring problem for automatic graphs, where colors are regular languages.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separating Automatic Relations\",\"authors\":\"Pablo Barcel'o, Diego Figueira, Rémi Morvan\",\"doi\":\"10.48550/arXiv.2305.08727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the separability problem for automatic relations (i.e., relations on finite words definable by synchronous automata) in terms of recognizable relations (i.e., finite unions of products of regular languages). This problem takes as input two automatic relations $R$ and $R'$, and asks if there exists a recognizable relation $S$ that contains $R$ and does not intersect $R'$. We show this problem to be undecidable when the number of products allowed in the recognizable relation is fixed. In particular, checking if there exists a recognizable relation $S$ with at most $k$ products of regular languages that separates $R$ from $R'$ is undecidable, for each fixed $k \\\\geq 2$. Our proofs reveal tight connections, of independent interest, between the separability problem and the finite coloring problem for automatic graphs, where colors are regular languages.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.08727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.08727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用可识别关系(正则语言积的有限并)研究了自动关系(即同步自动机可定义的有限词上的关系)的可分性问题。该问题将两个自动关系$R$和$R'$作为输入,并询问是否存在包含$R$且不与$R'$相交的可识别关系$S$。我们表明,当可识别关系中允许的产品数量固定时,这个问题是不可确定的。特别是,对于每个固定的$k \geq 2$,检查是否存在可识别的关系$S$与将$R$与$R'$分开的最多$k$个常规语言产品之间的关系是不可确定的。我们的证明揭示了可分性问题和自动图的有限着色问题之间的紧密联系,具有独立的兴趣,其中颜色是正则语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating Automatic Relations
We study the separability problem for automatic relations (i.e., relations on finite words definable by synchronous automata) in terms of recognizable relations (i.e., finite unions of products of regular languages). This problem takes as input two automatic relations $R$ and $R'$, and asks if there exists a recognizable relation $S$ that contains $R$ and does not intersect $R'$. We show this problem to be undecidable when the number of products allowed in the recognizable relation is fixed. In particular, checking if there exists a recognizable relation $S$ with at most $k$ products of regular languages that separates $R$ from $R'$ is undecidable, for each fixed $k \geq 2$. Our proofs reveal tight connections, of independent interest, between the separability problem and the finite coloring problem for automatic graphs, where colors are regular languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信