特征重要性排序提高入侵检测系统性能

Achmad Akbar Megantara, T. Ahmad
{"title":"特征重要性排序提高入侵检测系统性能","authors":"Achmad Akbar Megantara, T. Ahmad","doi":"10.1109/IC2IE50715.2020.9274570","DOIUrl":null,"url":null,"abstract":"The performance of the Intrusion Detection System (IDS) depends on the quality of the model generated in the training process. An appropriate process positively affects not only the performance but also computational time for detecting intrusions. Reliable training data can be obtained by preprocessing the dataset, which can be feature extraction, reduction, and transformation. Generally, feature selection has become the main problem. In this research, we work on that issue by developing a new method based on Feature Importance Ranking Classification. We propose to reduce the size of the dimension by combining Feature Importance Ranking to calculate the importance of each feature and Recursive Features Elimination (RFE). The results of the experiment show that the proposed method raises the performance over the existing methods. It can be proven by evaluating some metrics: accuracy, sensitivity, specificity, and false alarm rate.","PeriodicalId":211983,"journal":{"name":"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Feature Importance Ranking for Increasing Performance of Intrusion Detection System\",\"authors\":\"Achmad Akbar Megantara, T. Ahmad\",\"doi\":\"10.1109/IC2IE50715.2020.9274570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the Intrusion Detection System (IDS) depends on the quality of the model generated in the training process. An appropriate process positively affects not only the performance but also computational time for detecting intrusions. Reliable training data can be obtained by preprocessing the dataset, which can be feature extraction, reduction, and transformation. Generally, feature selection has become the main problem. In this research, we work on that issue by developing a new method based on Feature Importance Ranking Classification. We propose to reduce the size of the dimension by combining Feature Importance Ranking to calculate the importance of each feature and Recursive Features Elimination (RFE). The results of the experiment show that the proposed method raises the performance over the existing methods. It can be proven by evaluating some metrics: accuracy, sensitivity, specificity, and false alarm rate.\",\"PeriodicalId\":211983,\"journal\":{\"name\":\"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2IE50715.2020.9274570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2IE50715.2020.9274570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

入侵检测系统(IDS)的性能取决于训练过程中生成的模型的质量。适当的处理过程不仅对检测性能有积极的影响,而且对检测入侵的计算时间也有积极的影响。通过对数据集进行预处理,可以得到可靠的训练数据,包括特征提取、约简和变换。一般来说,特征选择已成为主要问题。在本研究中,我们通过开发一种基于特征重要性排序分类的新方法来解决这个问题。我们提出结合特征重要性排序来计算每个特征的重要性和递归特征消除(RFE)来减少维度的大小。实验结果表明,与现有的方法相比,该方法的性能得到了提高。它可以通过评估一些指标来证明:准确性、灵敏度、特异性和误报率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Importance Ranking for Increasing Performance of Intrusion Detection System
The performance of the Intrusion Detection System (IDS) depends on the quality of the model generated in the training process. An appropriate process positively affects not only the performance but also computational time for detecting intrusions. Reliable training data can be obtained by preprocessing the dataset, which can be feature extraction, reduction, and transformation. Generally, feature selection has become the main problem. In this research, we work on that issue by developing a new method based on Feature Importance Ranking Classification. We propose to reduce the size of the dimension by combining Feature Importance Ranking to calculate the importance of each feature and Recursive Features Elimination (RFE). The results of the experiment show that the proposed method raises the performance over the existing methods. It can be proven by evaluating some metrics: accuracy, sensitivity, specificity, and false alarm rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信