一种用于高机动目标跟踪的平滑rao - blackwell化粒子滤波器

H. Kamel, Wael Badawy
{"title":"一种用于高机动目标跟踪的平滑rao - blackwell化粒子滤波器","authors":"H. Kamel, Wael Badawy","doi":"10.1109/RADAR.2005.1435967","DOIUrl":null,"url":null,"abstract":"In this paper we apply a new smoothing Rao-Blackwellized particle filter to track a highly maneuverable target in a multiple-sensors network. The scenario of a highly-maneuverable target moving through a field of multiple sensors is addressed. The target is tracked through the sensors filed using both Rao-Blackwellized particle filter and the proposed smoothing filter. In a simulation comparison, the smoothing Rao-Blackwellized particle filter yields performance improvements when tracking a highly-maneuverable target.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A smoothing Rao-Blackwellized particle filter for tracking a highly-maneuverable target\",\"authors\":\"H. Kamel, Wael Badawy\",\"doi\":\"10.1109/RADAR.2005.1435967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we apply a new smoothing Rao-Blackwellized particle filter to track a highly maneuverable target in a multiple-sensors network. The scenario of a highly-maneuverable target moving through a field of multiple sensors is addressed. The target is tracked through the sensors filed using both Rao-Blackwellized particle filter and the proposed smoothing filter. In a simulation comparison, the smoothing Rao-Blackwellized particle filter yields performance improvements when tracking a highly-maneuverable target.\",\"PeriodicalId\":444253,\"journal\":{\"name\":\"IEEE International Radar Conference, 2005.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Radar Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2005.1435967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用一种新的平滑rao - blackwell化粒子滤波器来跟踪多传感器网络中的高机动目标。研究了高机动性目标在多传感器场中移动的情况。利用rao - blackwelzed粒子滤波和所提出的平滑滤波对目标进行跟踪。在仿真比较中,平滑rao - blackwell化粒子滤波器在跟踪高机动目标时性能得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A smoothing Rao-Blackwellized particle filter for tracking a highly-maneuverable target
In this paper we apply a new smoothing Rao-Blackwellized particle filter to track a highly maneuverable target in a multiple-sensors network. The scenario of a highly-maneuverable target moving through a field of multiple sensors is addressed. The target is tracked through the sensors filed using both Rao-Blackwellized particle filter and the proposed smoothing filter. In a simulation comparison, the smoothing Rao-Blackwellized particle filter yields performance improvements when tracking a highly-maneuverable target.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信