面向多模式数据访问的高效数据重用策略

Wensong Li, Fan Yang, Hengliang Zhu, Xuan Zeng, Dian Zhou
{"title":"面向多模式数据访问的高效数据重用策略","authors":"Wensong Li, Fan Yang, Hengliang Zhu, Xuan Zeng, Dian Zhou","doi":"10.1145/3240765.3240778","DOIUrl":null,"url":null,"abstract":"Memory partitioning has been widely adopted to increase the memory bandwidth. Data reuse is a hardware-efficient way to improve data access throughput by exploiting locality in memory access patterns. We found that for many applications in image and video processing, a global data reuse scheme can be shared by multiple patterns. In this paper, we propose an efficient data reuse strategy for multi-pattern data access. Firstly, a heuristic algorithm is proposed to extract the reuse information as well as find the non-reusable data elements of each pattern. Then the non-reusable elements are partitioned into several memory banks by an efficient memory partitioning algorithm. Moreover, the reuse information is utilized to generate the global data reuse logic shared by the multi-pattern. We design a novel algorithm to minimize the number of registers required by the data reuse logic. Experimental results show that compared with the state-of-the-art approach, our proposed method can reduce the number of required BRAMs by 62.2% on average, with the average reduction of 82.1% in SLICE, 87.1% in LUTs, 71.6% in Flip-Flops, 73.1% in DSP48Es, 83.8% in SRLs, 46.7% in storage overhead, 79.1% in dynamic power consumption, and 82.6% in execution time of memory partitioning. Besides, the performance is improved by 14.4%.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Efficient Data Reuse Strategy for Multi-Pattern Data Access\",\"authors\":\"Wensong Li, Fan Yang, Hengliang Zhu, Xuan Zeng, Dian Zhou\",\"doi\":\"10.1145/3240765.3240778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memory partitioning has been widely adopted to increase the memory bandwidth. Data reuse is a hardware-efficient way to improve data access throughput by exploiting locality in memory access patterns. We found that for many applications in image and video processing, a global data reuse scheme can be shared by multiple patterns. In this paper, we propose an efficient data reuse strategy for multi-pattern data access. Firstly, a heuristic algorithm is proposed to extract the reuse information as well as find the non-reusable data elements of each pattern. Then the non-reusable elements are partitioned into several memory banks by an efficient memory partitioning algorithm. Moreover, the reuse information is utilized to generate the global data reuse logic shared by the multi-pattern. We design a novel algorithm to minimize the number of registers required by the data reuse logic. Experimental results show that compared with the state-of-the-art approach, our proposed method can reduce the number of required BRAMs by 62.2% on average, with the average reduction of 82.1% in SLICE, 87.1% in LUTs, 71.6% in Flip-Flops, 73.1% in DSP48Es, 83.8% in SRLs, 46.7% in storage overhead, 79.1% in dynamic power consumption, and 82.6% in execution time of memory partitioning. Besides, the performance is improved by 14.4%.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3240778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

内存分区已被广泛采用以增加内存带宽。数据重用是通过利用内存访问模式中的局部性来提高数据访问吞吐量的一种硬件效率方法。我们发现,在图像和视频处理的许多应用中,一个全局的数据重用方案可以被多个模式共享。本文针对多模式数据访问提出了一种高效的数据重用策略。首先,提出了一种启发式算法来提取每个模式的可重用信息,并找出不可重用的数据元素;然后通过高效的内存分区算法将不可重用元素划分到多个内存库中。利用重用信息生成多模式共享的全局数据重用逻辑。我们设计了一种新的算法来最小化数据重用逻辑所需的寄存器数量。实验结果表明,与现有方法相比,该方法可将所需bram的数量平均减少62.2%,其中SLICE平均减少82.1%,lut平均减少87.1%,Flip-Flops平均减少71.6%,dsp48e平均减少73.1%,srl平均减少83.8%,存储开销减少46.7%,动态功耗减少79.1%,内存分区执行时间减少82.6%。此外,性能提高了14.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Data Reuse Strategy for Multi-Pattern Data Access
Memory partitioning has been widely adopted to increase the memory bandwidth. Data reuse is a hardware-efficient way to improve data access throughput by exploiting locality in memory access patterns. We found that for many applications in image and video processing, a global data reuse scheme can be shared by multiple patterns. In this paper, we propose an efficient data reuse strategy for multi-pattern data access. Firstly, a heuristic algorithm is proposed to extract the reuse information as well as find the non-reusable data elements of each pattern. Then the non-reusable elements are partitioned into several memory banks by an efficient memory partitioning algorithm. Moreover, the reuse information is utilized to generate the global data reuse logic shared by the multi-pattern. We design a novel algorithm to minimize the number of registers required by the data reuse logic. Experimental results show that compared with the state-of-the-art approach, our proposed method can reduce the number of required BRAMs by 62.2% on average, with the average reduction of 82.1% in SLICE, 87.1% in LUTs, 71.6% in Flip-Flops, 73.1% in DSP48Es, 83.8% in SRLs, 46.7% in storage overhead, 79.1% in dynamic power consumption, and 82.6% in execution time of memory partitioning. Besides, the performance is improved by 14.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信