在实数、欧几里得节和压缩感知上扩展代码

V. Guruswami, James R. Lee, A. Wigderson
{"title":"在实数、欧几里得节和压缩感知上扩展代码","authors":"V. Guruswami, James R. Lee, A. Wigderson","doi":"10.1109/ALLERTON.2009.5394536","DOIUrl":null,"url":null,"abstract":"Classical results from the 1970's state that w.h.p. a random subspace of TV-dimensional Euclidean space of proportional (linear in TV) dimension is “well-spread” in the sense that vectors in the subspace have their ¿2 mass smoothly spread over a linear number of coordinates. Such well-spread subspaces are intimately connected to low distortion embeddings, compressed sensing matrices, and error-correction over reals. We describe a construction inspired by expander/Tanner codes that can be used to produce well-spread subspaces of O(TV) dimension using sub-linear randomness (or in sub-exponential time). These results were presented in our paper [10]. We also discuss the connection of our subspaces to compressed sensing, and describe a near-linear time iterative recovery algorithm for compressible signals.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expander codes over reals, Euclidean sections, and compressed sensing\",\"authors\":\"V. Guruswami, James R. Lee, A. Wigderson\",\"doi\":\"10.1109/ALLERTON.2009.5394536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical results from the 1970's state that w.h.p. a random subspace of TV-dimensional Euclidean space of proportional (linear in TV) dimension is “well-spread” in the sense that vectors in the subspace have their ¿2 mass smoothly spread over a linear number of coordinates. Such well-spread subspaces are intimately connected to low distortion embeddings, compressed sensing matrices, and error-correction over reals. We describe a construction inspired by expander/Tanner codes that can be used to produce well-spread subspaces of O(TV) dimension using sub-linear randomness (or in sub-exponential time). These results were presented in our paper [10]. We also discuss the connection of our subspaces to compressed sensing, and describe a near-linear time iterative recovery algorithm for compressible signals.\",\"PeriodicalId\":440015,\"journal\":{\"name\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2009.5394536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2009.5394536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

20世纪70年代的经典结果表明,w.h.p.是TV维比例(TV为线性)欧几里得空间的随机子空间是“良好扩展”的,因为子空间中的向量的质量在线性数量的坐标上平滑地扩展。这种良好扩展的子空间与低失真嵌入、压缩感知矩阵和对实数的纠错密切相关。我们描述了一个受expander/Tanner码启发的结构,该结构可以使用次线性随机性(或在次指数时间内)产生O(TV)维的良好扩展子空间。我们的论文[10]给出了这些结果。我们还讨论了子空间与压缩感知的联系,并描述了一种可压缩信号的近线性时间迭代恢复算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expander codes over reals, Euclidean sections, and compressed sensing
Classical results from the 1970's state that w.h.p. a random subspace of TV-dimensional Euclidean space of proportional (linear in TV) dimension is “well-spread” in the sense that vectors in the subspace have their ¿2 mass smoothly spread over a linear number of coordinates. Such well-spread subspaces are intimately connected to low distortion embeddings, compressed sensing matrices, and error-correction over reals. We describe a construction inspired by expander/Tanner codes that can be used to produce well-spread subspaces of O(TV) dimension using sub-linear randomness (or in sub-exponential time). These results were presented in our paper [10]. We also discuss the connection of our subspaces to compressed sensing, and describe a near-linear time iterative recovery algorithm for compressible signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信