基于WLDNN_GAN的多模态音乐情感识别

Lanqing Yin, Jiandong Tang, Jinming Yu
{"title":"基于WLDNN_GAN的多模态音乐情感识别","authors":"Lanqing Yin, Jiandong Tang, Jinming Yu","doi":"10.1109/ISAIEE57420.2022.00114","DOIUrl":null,"url":null,"abstract":"In order to solve the current concern of music emotion recognition, this paper proposes the WLDNN_GAN algorithm, the abstract obtained music features are MFCC features, GTF features, midi music information features, through these three features for music emotion recognition and classification. Using the same dataset, the MSE, RMSE and R2 of some currently popular model models are compared horizontally for evaluation, and the experimental results show that the model proposed in this paper can achieve excellent performance in analysing music emotion information.","PeriodicalId":345703,"journal":{"name":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Music Emotion Recognition based on WLDNN_GAN\",\"authors\":\"Lanqing Yin, Jiandong Tang, Jinming Yu\",\"doi\":\"10.1109/ISAIEE57420.2022.00114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the current concern of music emotion recognition, this paper proposes the WLDNN_GAN algorithm, the abstract obtained music features are MFCC features, GTF features, midi music information features, through these three features for music emotion recognition and classification. Using the same dataset, the MSE, RMSE and R2 of some currently popular model models are compared horizontally for evaluation, and the experimental results show that the model proposed in this paper can achieve excellent performance in analysing music emotion information.\",\"PeriodicalId\":345703,\"journal\":{\"name\":\"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAIEE57420.2022.00114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAIEE57420.2022.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决当前人们对音乐情感识别的关注,本文提出了WLDNN_GAN算法,抽象得到的音乐特征有MFCC特征、GTF特征、midi音乐信息特征,通过这三个特征对音乐情感进行识别和分类。使用相同的数据集,横向比较了目前一些流行的模型模型的MSE、RMSE和R2进行评价,实验结果表明,本文提出的模型在音乐情感信息分析方面能够取得优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Music Emotion Recognition based on WLDNN_GAN
In order to solve the current concern of music emotion recognition, this paper proposes the WLDNN_GAN algorithm, the abstract obtained music features are MFCC features, GTF features, midi music information features, through these three features for music emotion recognition and classification. Using the same dataset, the MSE, RMSE and R2 of some currently popular model models are compared horizontally for evaluation, and the experimental results show that the model proposed in this paper can achieve excellent performance in analysing music emotion information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信