MLP-Pose:基于MLP-Mixer的人体姿态估计

Songkai Xiong, Zhaowei Qu, Yiran Wang, Xiaoru Wang, Han Xia
{"title":"MLP-Pose:基于MLP-Mixer的人体姿态估计","authors":"Songkai Xiong, Zhaowei Qu, Yiran Wang, Xiaoru Wang, Han Xia","doi":"10.1109/CCIS53392.2021.9754658","DOIUrl":null,"url":null,"abstract":"Current human pose estimation methods mainly use multi-scale fusion fully convolutional networks to achieve impressive results. However, this fully convolutional network lacks the ability to capture the relationship between features. In this paper, we propose a human pose estimation method based on MLP-Mixer. In detail, using 1D heatmaps as the ground truth, the human pose estimation is transformed into a sequence prediction problem on the horizontal axis and the vertical axis, so that the MLP-Mixer can be directly used to capture the relationship between the features. In addition, the existing backbone lacks intra-layer fusing. In order to solve this problem, we propose an efficient intra-layer fusion module. Specifically, our proposed MLP-Pose can achieve 77. 0AP and 76. 2AP on the COCO validation and test-dev dataset respectively.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MLP-Pose: Human Pose Estimation by MLP-Mixer\",\"authors\":\"Songkai Xiong, Zhaowei Qu, Yiran Wang, Xiaoru Wang, Han Xia\",\"doi\":\"10.1109/CCIS53392.2021.9754658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current human pose estimation methods mainly use multi-scale fusion fully convolutional networks to achieve impressive results. However, this fully convolutional network lacks the ability to capture the relationship between features. In this paper, we propose a human pose estimation method based on MLP-Mixer. In detail, using 1D heatmaps as the ground truth, the human pose estimation is transformed into a sequence prediction problem on the horizontal axis and the vertical axis, so that the MLP-Mixer can be directly used to capture the relationship between the features. In addition, the existing backbone lacks intra-layer fusing. In order to solve this problem, we propose an efficient intra-layer fusion module. Specifically, our proposed MLP-Pose can achieve 77. 0AP and 76. 2AP on the COCO validation and test-dev dataset respectively.\",\"PeriodicalId\":191226,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS53392.2021.9754658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前的人体姿态估计方法主要采用多尺度融合全卷积网络来实现。然而,这种全卷积网络缺乏捕捉特征之间关系的能力。本文提出了一种基于MLP-Mixer的人体姿态估计方法。其中,以1D热图作为地面真值,将人体姿态估计转化为水平轴和垂直轴上的序列预测问题,从而可以直接使用MLP-Mixer捕获特征之间的关系。此外,现有骨干网缺乏层内融合。为了解决这一问题,我们提出了一种高效的层内融合模块。具体来说,我们提出的MLP-Pose可以达到77。0AP和76。分别对COCO验证和测试开发数据集进行2AP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MLP-Pose: Human Pose Estimation by MLP-Mixer
Current human pose estimation methods mainly use multi-scale fusion fully convolutional networks to achieve impressive results. However, this fully convolutional network lacks the ability to capture the relationship between features. In this paper, we propose a human pose estimation method based on MLP-Mixer. In detail, using 1D heatmaps as the ground truth, the human pose estimation is transformed into a sequence prediction problem on the horizontal axis and the vertical axis, so that the MLP-Mixer can be directly used to capture the relationship between the features. In addition, the existing backbone lacks intra-layer fusing. In order to solve this problem, we propose an efficient intra-layer fusion module. Specifically, our proposed MLP-Pose can achieve 77. 0AP and 76. 2AP on the COCO validation and test-dev dataset respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信