交互式调试和评分统计机器翻译系统

Nitin Madnani
{"title":"交互式调试和评分统计机器翻译系统","authors":"Nitin Madnani","doi":"10.1109/ICSC.2011.36","DOIUrl":null,"url":null,"abstract":"Machine Translation (MT) systems are evaluated and debugged using the BLEU automated metric. However, the current community implementation of BLEU is not ideal for MT system developers and researchers since it only produces textual information. I present a novel tool called iBLEU that organizes BLEU scoring information in a visual and easy-to-understand manner, making it easier for MT system developers & researchers to quickly locate documents and sentences on which their system performs poorly. It also allows comparing translations from two different MT systems. Furthermore, one can also choose to compare to the publicly available MT systems, e.g., Google Translate and Bing Translator, with a single click. It can run on all major platforms and requires no setup whatsoever.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"iBLEU: Interactively Debugging and Scoring Statistical Machine Translation Systems\",\"authors\":\"Nitin Madnani\",\"doi\":\"10.1109/ICSC.2011.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Translation (MT) systems are evaluated and debugged using the BLEU automated metric. However, the current community implementation of BLEU is not ideal for MT system developers and researchers since it only produces textual information. I present a novel tool called iBLEU that organizes BLEU scoring information in a visual and easy-to-understand manner, making it easier for MT system developers & researchers to quickly locate documents and sentences on which their system performs poorly. It also allows comparing translations from two different MT systems. Furthermore, one can also choose to compare to the publicly available MT systems, e.g., Google Translate and Bing Translator, with a single click. It can run on all major platforms and requires no setup whatsoever.\",\"PeriodicalId\":408382,\"journal\":{\"name\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2011.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

机器翻译(MT)系统的评估和调试使用BLEU自动化度量。然而,目前BLEU的社区实现对于机器翻译系统开发人员和研究人员来说并不理想,因为它只产生文本信息。我提出了一个名为iBLEU的新工具,它以可视化和易于理解的方式组织BLEU评分信息,使MT系统开发人员和研究人员更容易快速定位系统表现不佳的文档和句子。它还允许比较来自两个不同机器翻译系统的翻译。此外,您还可以选择与公开可用的机器翻译系统进行比较,例如,谷歌翻译和必应翻译,只需点击一下。它可以在所有主流平台上运行,不需要任何设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
iBLEU: Interactively Debugging and Scoring Statistical Machine Translation Systems
Machine Translation (MT) systems are evaluated and debugged using the BLEU automated metric. However, the current community implementation of BLEU is not ideal for MT system developers and researchers since it only produces textual information. I present a novel tool called iBLEU that organizes BLEU scoring information in a visual and easy-to-understand manner, making it easier for MT system developers & researchers to quickly locate documents and sentences on which their system performs poorly. It also allows comparing translations from two different MT systems. Furthermore, one can also choose to compare to the publicly available MT systems, e.g., Google Translate and Bing Translator, with a single click. It can run on all major platforms and requires no setup whatsoever.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信