用低级描述符捕获图像语义

A. Mojsilovic, B. Rogowitz
{"title":"用低级描述符捕获图像语义","authors":"A. Mojsilovic, B. Rogowitz","doi":"10.1109/ICIP.2001.958942","DOIUrl":null,"url":null,"abstract":"We propose a method for semantic categorization and retrieval of photographic images based on low-level image descriptors. In this method, we first use multidimensional scaling (MDS) and hierarchical cluster analysis (HCA) to model the semantic categories into which human observers organize images. Through a series of psychophysical experiments and analyses, we refine our definition of these semantic categories, and use these results to discover a set of low-level image features to describe each category. We then devise an image similarity metric that embodies our results, and develop a prototype system, which identifies the semantic category of the image and retrieves the most similar images from the database. We tested the metric on a new set of images, and compared the categorization results with that of human observers. Our results provide a good match to human performance, thus validating the use of human judgments to develop semantic descriptors.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"161","resultStr":"{\"title\":\"Capturing image semantics with low-level descriptors\",\"authors\":\"A. Mojsilovic, B. Rogowitz\",\"doi\":\"10.1109/ICIP.2001.958942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method for semantic categorization and retrieval of photographic images based on low-level image descriptors. In this method, we first use multidimensional scaling (MDS) and hierarchical cluster analysis (HCA) to model the semantic categories into which human observers organize images. Through a series of psychophysical experiments and analyses, we refine our definition of these semantic categories, and use these results to discover a set of low-level image features to describe each category. We then devise an image similarity metric that embodies our results, and develop a prototype system, which identifies the semantic category of the image and retrieves the most similar images from the database. We tested the metric on a new set of images, and compared the categorization results with that of human observers. Our results provide a good match to human performance, thus validating the use of human judgments to develop semantic descriptors.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"161\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.958942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 161

摘要

提出了一种基于低级图像描述符的图像语义分类和检索方法。在该方法中,我们首先使用多维尺度(MDS)和层次聚类分析(HCA)对人类观察者组织图像的语义类别进行建模。通过一系列的心理物理实验和分析,我们完善了这些语义类别的定义,并利用这些结果发现了一组低级图像特征来描述每个类别。然后,我们设计了一个图像相似度度量来体现我们的结果,并开发了一个原型系统,该系统可以识别图像的语义类别并从数据库中检索最相似的图像。我们在一组新的图像上测试了该度量,并将分类结果与人类观察者的分类结果进行了比较。我们的结果与人类的表现很好地匹配,从而验证了使用人类判断来开发语义描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing image semantics with low-level descriptors
We propose a method for semantic categorization and retrieval of photographic images based on low-level image descriptors. In this method, we first use multidimensional scaling (MDS) and hierarchical cluster analysis (HCA) to model the semantic categories into which human observers organize images. Through a series of psychophysical experiments and analyses, we refine our definition of these semantic categories, and use these results to discover a set of low-level image features to describe each category. We then devise an image similarity metric that embodies our results, and develop a prototype system, which identifies the semantic category of the image and retrieves the most similar images from the database. We tested the metric on a new set of images, and compared the categorization results with that of human observers. Our results provide a good match to human performance, thus validating the use of human judgments to develop semantic descriptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信