一种基于类信息的特征基因选择SNMF方法

Jin-Xing Liu, Chun-Xia Ma, Ying-Lian Gao, Jian Liu, C. Zheng
{"title":"一种基于类信息的特征基因选择SNMF方法","authors":"Jin-Xing Liu, Chun-Xia Ma, Ying-Lian Gao, Jian Liu, C. Zheng","doi":"10.1109/ISB.2014.6990423","DOIUrl":null,"url":null,"abstract":"The significant advantage of sparse methods is to reduce the complicacy of genes expression data, which makes them easier to understand and interpret. In this paper, we propose a novel Class-information-based Sparse Non-negative Matrix Factorization (CISNMF) method which introduces the class information by the total scatter matrix. Firstly, the total scatter matrix is obtained via combining the between-class and within-class scatter matrices. Secondly, a new data matrix is constructed via singular values and left singular vectors which can be obtained via decomposing the total scatter matrix. Finally, we decompose the new data matrix by using sparse Non-negative Matrix Factorization and extract characteristic genes. In the end, results on gene expression data sets show that our method can extract more characteristic genes in response to abiotic stresses than conventional gene selection methods.","PeriodicalId":249103,"journal":{"name":"2014 8th International Conference on Systems Biology (ISB)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Class-information-based SNMF method for selecting characteristic genes\",\"authors\":\"Jin-Xing Liu, Chun-Xia Ma, Ying-Lian Gao, Jian Liu, C. Zheng\",\"doi\":\"10.1109/ISB.2014.6990423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significant advantage of sparse methods is to reduce the complicacy of genes expression data, which makes them easier to understand and interpret. In this paper, we propose a novel Class-information-based Sparse Non-negative Matrix Factorization (CISNMF) method which introduces the class information by the total scatter matrix. Firstly, the total scatter matrix is obtained via combining the between-class and within-class scatter matrices. Secondly, a new data matrix is constructed via singular values and left singular vectors which can be obtained via decomposing the total scatter matrix. Finally, we decompose the new data matrix by using sparse Non-negative Matrix Factorization and extract characteristic genes. In the end, results on gene expression data sets show that our method can extract more characteristic genes in response to abiotic stresses than conventional gene selection methods.\",\"PeriodicalId\":249103,\"journal\":{\"name\":\"2014 8th International Conference on Systems Biology (ISB)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 8th International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2014.6990423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2014.6990423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稀疏方法的显著优点是降低了基因表达数据的复杂性,使其更容易理解和解释。本文提出了一种新的基于类信息的稀疏非负矩阵分解(CISNMF)方法,该方法通过总散点矩阵引入类信息。首先,将类间散点矩阵和类内散点矩阵结合得到总散点矩阵;其次,通过分解总散点矩阵得到的奇异值和左奇异向量构造新的数据矩阵;最后,利用稀疏非负矩阵分解对新数据矩阵进行分解,提取特征基因。最后,基因表达数据集的结果表明,与传统的基因选择方法相比,我们的方法可以提取更多的非生物胁迫下的特征基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Class-information-based SNMF method for selecting characteristic genes
The significant advantage of sparse methods is to reduce the complicacy of genes expression data, which makes them easier to understand and interpret. In this paper, we propose a novel Class-information-based Sparse Non-negative Matrix Factorization (CISNMF) method which introduces the class information by the total scatter matrix. Firstly, the total scatter matrix is obtained via combining the between-class and within-class scatter matrices. Secondly, a new data matrix is constructed via singular values and left singular vectors which can be obtained via decomposing the total scatter matrix. Finally, we decompose the new data matrix by using sparse Non-negative Matrix Factorization and extract characteristic genes. In the end, results on gene expression data sets show that our method can extract more characteristic genes in response to abiotic stresses than conventional gene selection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信