基于模糊逻辑的三维三坐标测量机应变仪触发探头误差特性建模

S. Achiche, A. Woźniak, Z. Fan, M. Balazinski, L. Baron, T. Srensen
{"title":"基于模糊逻辑的三维三坐标测量机应变仪触发探头误差特性建模","authors":"S. Achiche, A. Woźniak, Z. Fan, M. Balazinski, L. Baron, T. Srensen","doi":"10.1109/NAFIPS.2008.4531237","DOIUrl":null,"url":null,"abstract":"The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated FKBs based on two optimization paradigms are used for the reconstruction of the direction- dependent probe error w. The angles beta and gamma are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real/ binary like coded genetic algorithm developed by the authors. The influence of the optimization criteria on the precision of the genetically-generated FKBs is presented.","PeriodicalId":430770,"journal":{"name":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"3D CMM strain-gauge triggering probe error characteristics modeling using fuzzy logic\",\"authors\":\"S. Achiche, A. Woźniak, Z. Fan, M. Balazinski, L. Baron, T. Srensen\",\"doi\":\"10.1109/NAFIPS.2008.4531237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated FKBs based on two optimization paradigms are used for the reconstruction of the direction- dependent probe error w. The angles beta and gamma are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real/ binary like coded genetic algorithm developed by the authors. The influence of the optimization criteria on the precision of the genetically-generated FKBs is presented.\",\"PeriodicalId\":430770,\"journal\":{\"name\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2008.4531237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2008.4531237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

三坐标测量机的误差值取决于探测方向;因此,它的空间变化是影响探测精度的关键因素。本文提出了一种基于遗传生成模糊知识库的三坐标测量机换模探头空间误差特性建模方法。利用基于两种优化范式的两个自动生成的FKBs重构了与方向相关的探测误差w,并将角度β和γ作为FKBs的输入变量;它们描述了探针触发的空间方向。用于生成FKBs的学习算法是作者开发的一种实数/二进制编码遗传算法。给出了优化准则对遗传生成FKBs精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D CMM strain-gauge triggering probe error characteristics modeling using fuzzy logic
The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated FKBs based on two optimization paradigms are used for the reconstruction of the direction- dependent probe error w. The angles beta and gamma are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real/ binary like coded genetic algorithm developed by the authors. The influence of the optimization criteria on the precision of the genetically-generated FKBs is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信