ATLAS液氩量热计的信号处理:研究与实现

D. Damazio
{"title":"ATLAS液氩量热计的信号处理:研究与实现","authors":"D. Damazio","doi":"10.1109/NSSMIC.2013.6829736","DOIUrl":null,"url":null,"abstract":"The ATLAS detector operated successfully at the LHC studying the proton-proton collisions produced with a center-of-mass of energy up to 8 TeV. During the period from 2009 to 2012, called the LHC Run 1, up to more than 37 independent collisions were produced every 50 ns at the LHC. The ATLAS detector has a set of calorimeters measuring the energy of different types of particles. The liquid argon calorimeters work by ionization of their active material and the free electrons are collected by electrodes at high voltages. Multiple samples of the analog signal are registered and digital signal processing techniques are used to extract its amplitude which is related to the energy deposited. The signal pulse is relatively long (up to 400 ns) and the probability of other physics events happening in the same detector area during that interval is high. A technique called Optimal Filter is used to minimize the effects of such pile-up. In the next data taking period, the luminosity will be higher and new techniques are being considered to mitigate the impact of the pile-up induced noise. Such techniques are also being envisaged for usage in the ATLAS trigger. This paper will discuss these techniques and their implementation in the ATCA standard electronics. A prototype using the processing power of FPGAs is being prepared for studies and planned to be used when the LHC returns to operation in 2015.","PeriodicalId":246351,"journal":{"name":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Signal processing for the ATLAS liquid argon calorimeter: Studies and implementation\",\"authors\":\"D. Damazio\",\"doi\":\"10.1109/NSSMIC.2013.6829736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ATLAS detector operated successfully at the LHC studying the proton-proton collisions produced with a center-of-mass of energy up to 8 TeV. During the period from 2009 to 2012, called the LHC Run 1, up to more than 37 independent collisions were produced every 50 ns at the LHC. The ATLAS detector has a set of calorimeters measuring the energy of different types of particles. The liquid argon calorimeters work by ionization of their active material and the free electrons are collected by electrodes at high voltages. Multiple samples of the analog signal are registered and digital signal processing techniques are used to extract its amplitude which is related to the energy deposited. The signal pulse is relatively long (up to 400 ns) and the probability of other physics events happening in the same detector area during that interval is high. A technique called Optimal Filter is used to minimize the effects of such pile-up. In the next data taking period, the luminosity will be higher and new techniques are being considered to mitigate the impact of the pile-up induced noise. Such techniques are also being envisaged for usage in the ATLAS trigger. This paper will discuss these techniques and their implementation in the ATCA standard electronics. A prototype using the processing power of FPGAs is being prepared for studies and planned to be used when the LHC returns to operation in 2015.\",\"PeriodicalId\":246351,\"journal\":{\"name\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2013.6829736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2013.6829736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

ATLAS探测器在大型强子对撞机上成功运行,研究了质心能量高达8 TeV的质子-质子碰撞。在2009年至2012年的LHC运行1期间,LHC每50纳秒产生37次以上的独立碰撞。ATLAS探测器有一组量热计,用来测量不同类型粒子的能量。液氩量热计的工作原理是使其活性物质电离,并在高压下由电极收集自由电子。对模拟信号的多个样本进行配准,并利用数字信号处理技术提取与沉积能量相关的幅值。信号脉冲相对较长(高达400纳秒),在这段时间内,在同一探测器区域发生其他物理事件的概率很高。一种叫做“最佳过滤”的技术被用来最大限度地减少这种堆积的影响。在接下来的数据采集周期中,亮度将会更高,并且正在考虑采用新的技术来减轻堆积引起的噪声的影响。这些技术也正在设想用于ATLAS触发器。本文将讨论这些技术及其在ATCA标准电子器件中的实现。使用fpga处理能力的原型机正在准备研究,并计划在2015年大型强子对撞机恢复运行时使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal processing for the ATLAS liquid argon calorimeter: Studies and implementation
The ATLAS detector operated successfully at the LHC studying the proton-proton collisions produced with a center-of-mass of energy up to 8 TeV. During the period from 2009 to 2012, called the LHC Run 1, up to more than 37 independent collisions were produced every 50 ns at the LHC. The ATLAS detector has a set of calorimeters measuring the energy of different types of particles. The liquid argon calorimeters work by ionization of their active material and the free electrons are collected by electrodes at high voltages. Multiple samples of the analog signal are registered and digital signal processing techniques are used to extract its amplitude which is related to the energy deposited. The signal pulse is relatively long (up to 400 ns) and the probability of other physics events happening in the same detector area during that interval is high. A technique called Optimal Filter is used to minimize the effects of such pile-up. In the next data taking period, the luminosity will be higher and new techniques are being considered to mitigate the impact of the pile-up induced noise. Such techniques are also being envisaged for usage in the ATLAS trigger. This paper will discuss these techniques and their implementation in the ATCA standard electronics. A prototype using the processing power of FPGAs is being prepared for studies and planned to be used when the LHC returns to operation in 2015.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信