等离子体纳米结构氮空位中心的自旋读数(会议报告)

S. Bogdanov, M. Shalaginov, O. Makarova, Chin-Cheng Chiang, A. Lagutchev, A. Boltasseva, V. Shalaev
{"title":"等离子体纳米结构氮空位中心的自旋读数(会议报告)","authors":"S. Bogdanov, M. Shalaginov, O. Makarova, Chin-Cheng Chiang, A. Lagutchev, A. Boltasseva, V. Shalaev","doi":"10.1117/12.2319629","DOIUrl":null,"url":null,"abstract":"Nitrogen-vacancy (NV) color centers in diamond possess electronic spins that one can manipulate coherently at room temperature using RF signals. The optical spin readout plays a key role in their performance for nanoscale magnetometry and quantum information processing. We demonstrate that plasmonic nanostructures can simultaneously guide optical, microwave and low-frequency signals ensuring spin manipulation and readout in an ultracompact setting. They can also enhance detected photon rates through efficient photon collection and shortening of the fluorescence lifetime. We show that in the case of dense NV ensembles the design of the optical readout interface must emphasize photon collection efficiency over Purcell enhancement. However, in the case of single NV centers, large Purcell enhancement may significantly improve the spin readout sensitivity. Enhancement for high-fidelity readout can be provided by nanoparticle-on-metal antennas featuring ultraconfined plasmonic modes.","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin readout of nitrogen-vacancy centers with plasmonic nanostructures (Conference Presentation)\",\"authors\":\"S. Bogdanov, M. Shalaginov, O. Makarova, Chin-Cheng Chiang, A. Lagutchev, A. Boltasseva, V. Shalaev\",\"doi\":\"10.1117/12.2319629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrogen-vacancy (NV) color centers in diamond possess electronic spins that one can manipulate coherently at room temperature using RF signals. The optical spin readout plays a key role in their performance for nanoscale magnetometry and quantum information processing. We demonstrate that plasmonic nanostructures can simultaneously guide optical, microwave and low-frequency signals ensuring spin manipulation and readout in an ultracompact setting. They can also enhance detected photon rates through efficient photon collection and shortening of the fluorescence lifetime. We show that in the case of dense NV ensembles the design of the optical readout interface must emphasize photon collection efficiency over Purcell enhancement. However, in the case of single NV centers, large Purcell enhancement may significantly improve the spin readout sensitivity. Enhancement for high-fidelity readout can be provided by nanoparticle-on-metal antennas featuring ultraconfined plasmonic modes.\",\"PeriodicalId\":169708,\"journal\":{\"name\":\"Metamaterials, Metadevices, and Metasystems 2018\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials, Metadevices, and Metasystems 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2319629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2319629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金刚石中的氮空位(NV)色心具有电子自旋,可以在室温下使用射频信号进行相干操纵。光学自旋读数在纳米级磁强计和量子信息处理中起着关键作用。我们证明了等离子体纳米结构可以同时引导光学、微波和低频信号,确保在超紧凑的环境下进行自旋操纵和读出。它们还可以通过有效的光子收集和缩短荧光寿命来提高检测到的光子率。我们表明,在密集NV集成的情况下,光学读出接口的设计必须强调光子收集效率而不是Purcell增强。然而,在单NV中心的情况下,较大的Purcell增强可能显著提高自旋读出灵敏度。金属天线上的纳米粒子具有超约束等离子体模式,可增强高保真读数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin readout of nitrogen-vacancy centers with plasmonic nanostructures (Conference Presentation)
Nitrogen-vacancy (NV) color centers in diamond possess electronic spins that one can manipulate coherently at room temperature using RF signals. The optical spin readout plays a key role in their performance for nanoscale magnetometry and quantum information processing. We demonstrate that plasmonic nanostructures can simultaneously guide optical, microwave and low-frequency signals ensuring spin manipulation and readout in an ultracompact setting. They can also enhance detected photon rates through efficient photon collection and shortening of the fluorescence lifetime. We show that in the case of dense NV ensembles the design of the optical readout interface must emphasize photon collection efficiency over Purcell enhancement. However, in the case of single NV centers, large Purcell enhancement may significantly improve the spin readout sensitivity. Enhancement for high-fidelity readout can be provided by nanoparticle-on-metal antennas featuring ultraconfined plasmonic modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信