说话者角色识别,以帮助自发的会话语音检测

SSCS '10 Pub Date : 2010-10-29 DOI:10.1145/1878101.1878104
Benjamin Bigot, I. Ferrané, J. Pinquier, R. André-Obrecht
{"title":"说话者角色识别,以帮助自发的会话语音检测","authors":"Benjamin Bigot, I. Ferrané, J. Pinquier, R. André-Obrecht","doi":"10.1145/1878101.1878104","DOIUrl":null,"url":null,"abstract":"In the audio indexing context, we present our recent contributions to the field of speaker role recognition, especially applied to conversational speech.\n We assume that there exist clues about roles like Anchor, Journalists or Others in temporal, acoustic and prosodic features extracted from the results of speaker segmentation and from audio files. In this paper, investigations are done on the EPAC corpus, mainly containing conversational documents. First, an automatic clustering approach is used to validate the proposed features and the role definitions. In a second study we propose a hierarchical supervised classification system. The use of dimensionality reduction methods as well as feature selection are investigated. This system correctly classifies 92% of speaker roles","PeriodicalId":123226,"journal":{"name":"SSCS '10","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Speaker role recognition to help spontaneous conversational speech detection\",\"authors\":\"Benjamin Bigot, I. Ferrané, J. Pinquier, R. André-Obrecht\",\"doi\":\"10.1145/1878101.1878104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the audio indexing context, we present our recent contributions to the field of speaker role recognition, especially applied to conversational speech.\\n We assume that there exist clues about roles like Anchor, Journalists or Others in temporal, acoustic and prosodic features extracted from the results of speaker segmentation and from audio files. In this paper, investigations are done on the EPAC corpus, mainly containing conversational documents. First, an automatic clustering approach is used to validate the proposed features and the role definitions. In a second study we propose a hierarchical supervised classification system. The use of dimensionality reduction methods as well as feature selection are investigated. This system correctly classifies 92% of speaker roles\",\"PeriodicalId\":123226,\"journal\":{\"name\":\"SSCS '10\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SSCS '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1878101.1878104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSCS '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878101.1878104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在音频索引的背景下,我们介绍了我们最近在说话人角色识别领域的贡献,特别是在会话语音中的应用。我们假设从说话人分割结果和音频文件中提取的时间、声学和韵律特征中存在主播、记者或其他角色的线索。本文对EPAC语料库进行了研究,主要包括会话文档。首先,使用自动聚类方法验证所提出的特征和角色定义。在第二项研究中,我们提出了一个分层监督分类系统。研究了降维方法的使用以及特征选择。该系统正确分类了92%的说话者角色
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speaker role recognition to help spontaneous conversational speech detection
In the audio indexing context, we present our recent contributions to the field of speaker role recognition, especially applied to conversational speech. We assume that there exist clues about roles like Anchor, Journalists or Others in temporal, acoustic and prosodic features extracted from the results of speaker segmentation and from audio files. In this paper, investigations are done on the EPAC corpus, mainly containing conversational documents. First, an automatic clustering approach is used to validate the proposed features and the role definitions. In a second study we propose a hierarchical supervised classification system. The use of dimensionality reduction methods as well as feature selection are investigated. This system correctly classifies 92% of speaker roles
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信