为什么原子和亚原子粒子具有波动性质并满足薛定谔方程?它推断出这些带电粒子的结构

Senniang Chen
{"title":"为什么原子和亚原子粒子具有波动性质并满足薛定谔方程?它推断出这些带电粒子的结构","authors":"Senniang Chen","doi":"10.12988/astp.2021.91522","DOIUrl":null,"url":null,"abstract":"Why electromagnetic radiations have quantum property? We have tried to find the answer. Conversely, why the atomic and subatomic particles have wave property and satisfy the Schrodinger equation? Now let’s try to see if there is a mechanism. Schrodinger equation as a differential wave equation must have a general solution of the type ) ( ) ( Vt z f Vt z f    . It logically infers the necessary condition for the particle and system to satisfy the Schrodinger equation: they","PeriodicalId":127314,"journal":{"name":"Advanced Studies in Theoretical Physics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Why atomic and subatomic particles have wave property and satisfy the Schrodinger Equation? It infers the structures of these ± charged particles\",\"authors\":\"Senniang Chen\",\"doi\":\"10.12988/astp.2021.91522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Why electromagnetic radiations have quantum property? We have tried to find the answer. Conversely, why the atomic and subatomic particles have wave property and satisfy the Schrodinger equation? Now let’s try to see if there is a mechanism. Schrodinger equation as a differential wave equation must have a general solution of the type ) ( ) ( Vt z f Vt z f    . It logically infers the necessary condition for the particle and system to satisfy the Schrodinger equation: they\",\"PeriodicalId\":127314,\"journal\":{\"name\":\"Advanced Studies in Theoretical Physics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Studies in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/astp.2021.91522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Studies in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/astp.2021.91522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为什么电磁辐射具有量子特性?我们一直在努力寻找答案。相反,为什么原子和亚原子粒子具有波动性质并满足薛定谔方程?现在我们来看看是否有一个机制。薛定谔方程作为微分波动方程必须有一个通解类型为:()(Vt z f Vt z f。它从逻辑上推导出粒子和系统满足薛定谔方程的必要条件:它们
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why atomic and subatomic particles have wave property and satisfy the Schrodinger Equation? It infers the structures of these ± charged particles
Why electromagnetic radiations have quantum property? We have tried to find the answer. Conversely, why the atomic and subatomic particles have wave property and satisfy the Schrodinger equation? Now let’s try to see if there is a mechanism. Schrodinger equation as a differential wave equation must have a general solution of the type ) ( ) ( Vt z f Vt z f    . It logically infers the necessary condition for the particle and system to satisfy the Schrodinger equation: they
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信