基于主成分分析的模糊隶属函数神经网络癫痫发作检测

C. Fatichah, Abdullah M. Iliyasu, K. Abuhasel, N. Suciati, Mohammed A. Al-Qodah
{"title":"基于主成分分析的模糊隶属函数神经网络癫痫发作检测","authors":"C. Fatichah, Abdullah M. Iliyasu, K. Abuhasel, N. Suciati, Mohammed A. Al-Qodah","doi":"10.1109/ICNC.2014.6975832","DOIUrl":null,"url":null,"abstract":"A hybrid principal component analysis (PCA)-based neural network with fuzzy membership function (NEWFM) is proposed for epileptic seizure detection. By combining PCA and NEWFM, the proposed method improves the accuracy in epileptic seizure detection. The PCA is used for wavelet feature enhancement needed to eliminate the sensitivity of noise, electrode artifacts, or redundancy. NEWFM, a model of neural networks, is integrated to improve prediction results by updating weights of fuzzy membership functions. A dataset made up of 5 sets, each consisting 100 single EEGs segments, is employed to evaluate the proposed system's performance. Based on the experiments, the prediction results show an accuracy rate of 98.29% for epileptic seizure classification while in the best cases the accuracy reaches 99.5% for the `normal' (Z-S) seizure classification task.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Principal component analysis-based neural network with fuzzy membership function for epileptic seizure detection\",\"authors\":\"C. Fatichah, Abdullah M. Iliyasu, K. Abuhasel, N. Suciati, Mohammed A. Al-Qodah\",\"doi\":\"10.1109/ICNC.2014.6975832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid principal component analysis (PCA)-based neural network with fuzzy membership function (NEWFM) is proposed for epileptic seizure detection. By combining PCA and NEWFM, the proposed method improves the accuracy in epileptic seizure detection. The PCA is used for wavelet feature enhancement needed to eliminate the sensitivity of noise, electrode artifacts, or redundancy. NEWFM, a model of neural networks, is integrated to improve prediction results by updating weights of fuzzy membership functions. A dataset made up of 5 sets, each consisting 100 single EEGs segments, is employed to evaluate the proposed system's performance. Based on the experiments, the prediction results show an accuracy rate of 98.29% for epileptic seizure classification while in the best cases the accuracy reaches 99.5% for the `normal' (Z-S) seizure classification task.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种基于模糊隶属函数的混合主成分分析神经网络(NEWFM)用于癫痫发作检测。该方法结合PCA和NEWFM,提高了癫痫发作检测的准确率。PCA用于小波特征增强,以消除噪声、电极伪影或冗余的敏感性。结合神经网络模型NEWFM,通过更新模糊隶属函数的权值来改善预测结果。使用由5组组成的数据集(每组由100个单个eeg片段组成)来评估所提出的系统的性能。实验结果表明,该方法对癫痫发作分类的准确率为98.29%,对“正常”(Z-S)癫痫发作分类的准确率最高可达99.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal component analysis-based neural network with fuzzy membership function for epileptic seizure detection
A hybrid principal component analysis (PCA)-based neural network with fuzzy membership function (NEWFM) is proposed for epileptic seizure detection. By combining PCA and NEWFM, the proposed method improves the accuracy in epileptic seizure detection. The PCA is used for wavelet feature enhancement needed to eliminate the sensitivity of noise, electrode artifacts, or redundancy. NEWFM, a model of neural networks, is integrated to improve prediction results by updating weights of fuzzy membership functions. A dataset made up of 5 sets, each consisting 100 single EEGs segments, is employed to evaluate the proposed system's performance. Based on the experiments, the prediction results show an accuracy rate of 98.29% for epileptic seizure classification while in the best cases the accuracy reaches 99.5% for the `normal' (Z-S) seizure classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信