{"title":"对称有向图和完全二部有向图的有向树连通性","authors":"Junran Yu","doi":"10.1142/s0219265922500086","DOIUrl":null,"url":null,"abstract":"Sun and Yeo introduced the concept of directed tree connectivity, including the generalized [Formula: see text]-vertex-strong connectivity, [Formula: see text] and generalized [Formula: see text]-arc-strong connectivity, [Formula: see text] [Formula: see text], which could be seen as a generalization of classical connectivity of digraphs and a natural extension of the well-established undirected tree connectivity. In this paper, we study the directed tree connectivity of symmetric digraphs and complete bipartite digraphs. We give lower bounds for the two parameters [Formula: see text] and [Formula: see text] on symmetric digraphs. We also determine the precise values of [Formula: see text] for every [Formula: see text] and [Formula: see text] for [Formula: see text], where [Formula: see text] is a complete bipartite digraph of order [Formula: see text].","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directed Tree Connectivity of Symmetric Digraphs and Complete Bipartite Digraphs\",\"authors\":\"Junran Yu\",\"doi\":\"10.1142/s0219265922500086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sun and Yeo introduced the concept of directed tree connectivity, including the generalized [Formula: see text]-vertex-strong connectivity, [Formula: see text] and generalized [Formula: see text]-arc-strong connectivity, [Formula: see text] [Formula: see text], which could be seen as a generalization of classical connectivity of digraphs and a natural extension of the well-established undirected tree connectivity. In this paper, we study the directed tree connectivity of symmetric digraphs and complete bipartite digraphs. We give lower bounds for the two parameters [Formula: see text] and [Formula: see text] on symmetric digraphs. We also determine the precise values of [Formula: see text] for every [Formula: see text] and [Formula: see text] for [Formula: see text], where [Formula: see text] is a complete bipartite digraph of order [Formula: see text].\",\"PeriodicalId\":153590,\"journal\":{\"name\":\"J. Interconnect. Networks\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Interconnect. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265922500086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265922500086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Directed Tree Connectivity of Symmetric Digraphs and Complete Bipartite Digraphs
Sun and Yeo introduced the concept of directed tree connectivity, including the generalized [Formula: see text]-vertex-strong connectivity, [Formula: see text] and generalized [Formula: see text]-arc-strong connectivity, [Formula: see text] [Formula: see text], which could be seen as a generalization of classical connectivity of digraphs and a natural extension of the well-established undirected tree connectivity. In this paper, we study the directed tree connectivity of symmetric digraphs and complete bipartite digraphs. We give lower bounds for the two parameters [Formula: see text] and [Formula: see text] on symmetric digraphs. We also determine the precise values of [Formula: see text] for every [Formula: see text] and [Formula: see text] for [Formula: see text], where [Formula: see text] is a complete bipartite digraph of order [Formula: see text].