对称有向图和完全二部有向图的有向树连通性

Junran Yu
{"title":"对称有向图和完全二部有向图的有向树连通性","authors":"Junran Yu","doi":"10.1142/s0219265922500086","DOIUrl":null,"url":null,"abstract":"Sun and Yeo introduced the concept of directed tree connectivity, including the generalized [Formula: see text]-vertex-strong connectivity, [Formula: see text] and generalized [Formula: see text]-arc-strong connectivity, [Formula: see text] [Formula: see text], which could be seen as a generalization of classical connectivity of digraphs and a natural extension of the well-established undirected tree connectivity. In this paper, we study the directed tree connectivity of symmetric digraphs and complete bipartite digraphs. We give lower bounds for the two parameters [Formula: see text] and [Formula: see text] on symmetric digraphs. We also determine the precise values of [Formula: see text] for every [Formula: see text] and [Formula: see text] for [Formula: see text], where [Formula: see text] is a complete bipartite digraph of order [Formula: see text].","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directed Tree Connectivity of Symmetric Digraphs and Complete Bipartite Digraphs\",\"authors\":\"Junran Yu\",\"doi\":\"10.1142/s0219265922500086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sun and Yeo introduced the concept of directed tree connectivity, including the generalized [Formula: see text]-vertex-strong connectivity, [Formula: see text] and generalized [Formula: see text]-arc-strong connectivity, [Formula: see text] [Formula: see text], which could be seen as a generalization of classical connectivity of digraphs and a natural extension of the well-established undirected tree connectivity. In this paper, we study the directed tree connectivity of symmetric digraphs and complete bipartite digraphs. We give lower bounds for the two parameters [Formula: see text] and [Formula: see text] on symmetric digraphs. We also determine the precise values of [Formula: see text] for every [Formula: see text] and [Formula: see text] for [Formula: see text], where [Formula: see text] is a complete bipartite digraph of order [Formula: see text].\",\"PeriodicalId\":153590,\"journal\":{\"name\":\"J. Interconnect. Networks\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Interconnect. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265922500086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265922500086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Sun和Yeo引入了有向树连通性的概念,包括广义的[公式:见文]-顶点强连通性,[公式:见文]和广义的[公式:见文]-弧强连通性,[公式:见文][公式:见文],这可以看作是对有向图的经典连通性的推广,也是对已建立的无向树连通性的自然延伸。本文研究了对称有向图和完全二部有向图的有向树连通性。我们给出了对称有向图的两个参数[公式:见文]和[公式:见文]的下界。我们还确定了每个[公式:见文]的[公式:见文]和[公式:见文]的[公式:见文]的[公式:见文]的精确值,其中[公式:见文]是有序的完全二部有向图[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Directed Tree Connectivity of Symmetric Digraphs and Complete Bipartite Digraphs
Sun and Yeo introduced the concept of directed tree connectivity, including the generalized [Formula: see text]-vertex-strong connectivity, [Formula: see text] and generalized [Formula: see text]-arc-strong connectivity, [Formula: see text] [Formula: see text], which could be seen as a generalization of classical connectivity of digraphs and a natural extension of the well-established undirected tree connectivity. In this paper, we study the directed tree connectivity of symmetric digraphs and complete bipartite digraphs. We give lower bounds for the two parameters [Formula: see text] and [Formula: see text] on symmetric digraphs. We also determine the precise values of [Formula: see text] for every [Formula: see text] and [Formula: see text] for [Formula: see text], where [Formula: see text] is a complete bipartite digraph of order [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信