基于三维网格划分和Meanshift迭代的wsn节点定位算法

Pingzhang Gou, Mengyuan Sun, Xuezhi Liu, Gang Mao, F. Li
{"title":"基于三维网格划分和Meanshift迭代的wsn节点定位算法","authors":"Pingzhang Gou, Mengyuan Sun, Xuezhi Liu, Gang Mao, F. Li","doi":"10.1109/ICVRIS.2019.00116","DOIUrl":null,"url":null,"abstract":"A MeanShift-based node localization algorithm in three-dimensional grid environment is proposed to solve the problem of wireless sensor network node positioning accuracy. The algorithm embeds the data objects into the three-dimensional space divided into grid cells, which uses a density threshold to identify the dense units and finds the density-based clusters in the grid cells. MeanShift algorithm is used to calculate the optimal solution of probability density and achieve the accurate location of nodes. The simulation results show that the proposed algorithm improves the average relative positioning accuracy of nodes compared with 3D-DV-Hop algorithm and 3D-WD-DV-Hop algorithm, with the increase of the total number of nodes and communication radius.","PeriodicalId":294342,"journal":{"name":"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Node Localization Algorithm Based on 3D Grid Partition and Meanshift Iteration for WSNs\",\"authors\":\"Pingzhang Gou, Mengyuan Sun, Xuezhi Liu, Gang Mao, F. Li\",\"doi\":\"10.1109/ICVRIS.2019.00116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A MeanShift-based node localization algorithm in three-dimensional grid environment is proposed to solve the problem of wireless sensor network node positioning accuracy. The algorithm embeds the data objects into the three-dimensional space divided into grid cells, which uses a density threshold to identify the dense units and finds the density-based clusters in the grid cells. MeanShift algorithm is used to calculate the optimal solution of probability density and achieve the accurate location of nodes. The simulation results show that the proposed algorithm improves the average relative positioning accuracy of nodes compared with 3D-DV-Hop algorithm and 3D-WD-DV-Hop algorithm, with the increase of the total number of nodes and communication radius.\",\"PeriodicalId\":294342,\"journal\":{\"name\":\"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRIS.2019.00116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS.2019.00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对无线传感器网络节点定位精度问题,提出了一种基于meanshift的三维网格环境下节点定位算法。该算法将数据对象嵌入到划分为网格单元的三维空间中,使用密度阈值识别密集单元,并在网格单元中找到基于密度的聚类。使用MeanShift算法计算概率密度的最优解,实现节点的精确定位。仿真结果表明,随着节点总数和通信半径的增加,与3D-DV-Hop算法和3D-WD-DV-Hop算法相比,该算法提高了节点的平均相对定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Node Localization Algorithm Based on 3D Grid Partition and Meanshift Iteration for WSNs
A MeanShift-based node localization algorithm in three-dimensional grid environment is proposed to solve the problem of wireless sensor network node positioning accuracy. The algorithm embeds the data objects into the three-dimensional space divided into grid cells, which uses a density threshold to identify the dense units and finds the density-based clusters in the grid cells. MeanShift algorithm is used to calculate the optimal solution of probability density and achieve the accurate location of nodes. The simulation results show that the proposed algorithm improves the average relative positioning accuracy of nodes compared with 3D-DV-Hop algorithm and 3D-WD-DV-Hop algorithm, with the increase of the total number of nodes and communication radius.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信