在饱和水环境下使用13个井眼配置的GPR断层扫描

N. Belkowiche, H. Jourde, J. Rolando, G. Massonnat, G. Sénéchal, D. Rousset
{"title":"在饱和水环境下使用13个井眼配置的GPR断层扫描","authors":"N. Belkowiche, H. Jourde, J. Rolando, G. Massonnat, G. Sénéchal, D. Rousset","doi":"10.1109/ICGPR.2018.8441551","DOIUrl":null,"url":null,"abstract":"This study takes part in an integrated project whose goal is to characterize the permeability heterogeneity controlling the water flow in a saturated environment. Our approach, as part as this project, is based on the use of ground penetrating radar (GPR) in order to determine the water content by means of an EM velocity model. We investigate a porous, permeable and water saturated formation (bioclastic limestones dating from the Burdigalian). The studied area is located in the South of France, near the city of Montpellier. Thirteen vertical 35 meters deep boreholes, including 3 continuous cores, were drilled in 2016. A total of 32 tomographies have been acquired between the 13 wells with 100 MHz antennas. In addition to the tomographies, GPR log has been carried out in each well with 250 MHz antennas. The 32 dataset have been separately inverted in order to obtain 32 2D velocity models. These inversions were based on the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm. The analysis of these 2D models shows velocity variations interpreted as water content heterogeneities. Correlations between tomographies, logs and core measurements show strong similarities in terms of global trend. However, absolute velocity differences between each panel justify 3D perspectives.","PeriodicalId":269482,"journal":{"name":"2018 17th International Conference on Ground Penetrating Radar (GPR)","volume":"1930 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPR tomography in a water saturated context using a 13 boreholes configuration\",\"authors\":\"N. Belkowiche, H. Jourde, J. Rolando, G. Massonnat, G. Sénéchal, D. Rousset\",\"doi\":\"10.1109/ICGPR.2018.8441551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study takes part in an integrated project whose goal is to characterize the permeability heterogeneity controlling the water flow in a saturated environment. Our approach, as part as this project, is based on the use of ground penetrating radar (GPR) in order to determine the water content by means of an EM velocity model. We investigate a porous, permeable and water saturated formation (bioclastic limestones dating from the Burdigalian). The studied area is located in the South of France, near the city of Montpellier. Thirteen vertical 35 meters deep boreholes, including 3 continuous cores, were drilled in 2016. A total of 32 tomographies have been acquired between the 13 wells with 100 MHz antennas. In addition to the tomographies, GPR log has been carried out in each well with 250 MHz antennas. The 32 dataset have been separately inverted in order to obtain 32 2D velocity models. These inversions were based on the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm. The analysis of these 2D models shows velocity variations interpreted as water content heterogeneities. Correlations between tomographies, logs and core measurements show strong similarities in terms of global trend. However, absolute velocity differences between each panel justify 3D perspectives.\",\"PeriodicalId\":269482,\"journal\":{\"name\":\"2018 17th International Conference on Ground Penetrating Radar (GPR)\",\"volume\":\"1930 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th International Conference on Ground Penetrating Radar (GPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2018.8441551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2018.8441551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究是一个综合项目的一部分,其目标是表征在饱和环境中控制水流的渗透率非均质性。作为该项目的一部分,我们的方法是基于使用探地雷达(GPR),通过电磁速度模型来确定含水量。我们研究了一种多孔、渗透性和水饱和的地层(burdigian的生物碎屑灰岩)。研究区域位于法国南部,靠近蒙彼利埃市。2016年,共钻了13个35米深的垂直井眼,其中包括3个连续岩心。使用100 MHz天线在13口井之间共获得了32张层析成像。除了层摄影外,每口井还使用250 MHz天线进行了探地雷达测井。对32个数据集分别进行反演,得到32个二维速度模型。这些反演是基于SIRT(同步迭代重建技术)算法。对这些二维模型的分析表明,速度变化被解释为含水量的非均质性。层析成像、测井和岩心测量之间的相关性在全球趋势上显示出很强的相似性。然而,每个面板之间的绝对速度差异证明了3D视角的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPR tomography in a water saturated context using a 13 boreholes configuration
This study takes part in an integrated project whose goal is to characterize the permeability heterogeneity controlling the water flow in a saturated environment. Our approach, as part as this project, is based on the use of ground penetrating radar (GPR) in order to determine the water content by means of an EM velocity model. We investigate a porous, permeable and water saturated formation (bioclastic limestones dating from the Burdigalian). The studied area is located in the South of France, near the city of Montpellier. Thirteen vertical 35 meters deep boreholes, including 3 continuous cores, were drilled in 2016. A total of 32 tomographies have been acquired between the 13 wells with 100 MHz antennas. In addition to the tomographies, GPR log has been carried out in each well with 250 MHz antennas. The 32 dataset have been separately inverted in order to obtain 32 2D velocity models. These inversions were based on the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm. The analysis of these 2D models shows velocity variations interpreted as water content heterogeneities. Correlations between tomographies, logs and core measurements show strong similarities in terms of global trend. However, absolute velocity differences between each panel justify 3D perspectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信