基于模糊k均值聚类的自动驾驶车辆定位与映射:一种非语义方法

Anas Charroud, Ali Yahyaouy, K. E. Moutaouakil, Uche Onyekpe
{"title":"基于模糊k均值聚类的自动驾驶车辆定位与映射:一种非语义方法","authors":"Anas Charroud, Ali Yahyaouy, K. E. Moutaouakil, Uche Onyekpe","doi":"10.1109/ISCV54655.2022.9806102","DOIUrl":null,"url":null,"abstract":"Localisation and mapping are crucial for autonomous vehicles, as they inform the vehicle of where exactly they are in their environment as well as relevant infrastructures within the identified environment. This paper demonstrates the ability of non-semantic features to represent point clouds and use them to explain the environment. Our proposed architecture uses the Fuzzy K-means approach to extract features from LiDAR scenes in order to reduce the feature map and guarantee that the features are identifiable in each frame. Secondly, global mapping is done with the Gaussian Mixture Model (GMM) to facilitate data association between the frames to be mapped and helps localisation tasks to be performed accurately by the particle filter. The performance of the proposed technique is compared to other state of the art methods over different sequences of the Kitti raw dataset with different environmental structures, weather conditions and seasonal changes. The results obtained demonstrates the superiority of the proposed approach in terms of speed and representativeness of features needed for real-time localisation. Moreso, we achieved competitive accuracies compared to other state-of-the-art methods.","PeriodicalId":426665,"journal":{"name":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Localisation and Mapping of Self-driving Vehicles based on Fuzzy K-means Clustering: A Non-semantic Approach\",\"authors\":\"Anas Charroud, Ali Yahyaouy, K. E. Moutaouakil, Uche Onyekpe\",\"doi\":\"10.1109/ISCV54655.2022.9806102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localisation and mapping are crucial for autonomous vehicles, as they inform the vehicle of where exactly they are in their environment as well as relevant infrastructures within the identified environment. This paper demonstrates the ability of non-semantic features to represent point clouds and use them to explain the environment. Our proposed architecture uses the Fuzzy K-means approach to extract features from LiDAR scenes in order to reduce the feature map and guarantee that the features are identifiable in each frame. Secondly, global mapping is done with the Gaussian Mixture Model (GMM) to facilitate data association between the frames to be mapped and helps localisation tasks to be performed accurately by the particle filter. The performance of the proposed technique is compared to other state of the art methods over different sequences of the Kitti raw dataset with different environmental structures, weather conditions and seasonal changes. The results obtained demonstrates the superiority of the proposed approach in terms of speed and representativeness of features needed for real-time localisation. Moreso, we achieved competitive accuracies compared to other state-of-the-art methods.\",\"PeriodicalId\":426665,\"journal\":{\"name\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCV54655.2022.9806102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCV54655.2022.9806102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

定位和绘图对于自动驾驶汽车来说至关重要,因为它们可以告诉车辆自己在环境中的确切位置,以及所识别环境中的相关基础设施。本文论证了用非语义特征来表示点云并利用它们来解释环境的能力。我们提出的架构使用模糊K-means方法从LiDAR场景中提取特征,以减少特征映射并保证特征在每帧中都是可识别的。其次,利用高斯混合模型(GMM)进行全局映射,以促进待映射帧之间的数据关联,并帮助粒子滤波器准确地执行定位任务。在不同环境结构、天气条件和季节变化的Kitti原始数据集的不同序列上,将所提出的技术的性能与其他最先进的方法进行了比较。结果表明,所提出的方法在速度和实时定位所需特征的代表性方面具有优势。此外,与其他最先进的方法相比,我们取得了具有竞争力的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localisation and Mapping of Self-driving Vehicles based on Fuzzy K-means Clustering: A Non-semantic Approach
Localisation and mapping are crucial for autonomous vehicles, as they inform the vehicle of where exactly they are in their environment as well as relevant infrastructures within the identified environment. This paper demonstrates the ability of non-semantic features to represent point clouds and use them to explain the environment. Our proposed architecture uses the Fuzzy K-means approach to extract features from LiDAR scenes in order to reduce the feature map and guarantee that the features are identifiable in each frame. Secondly, global mapping is done with the Gaussian Mixture Model (GMM) to facilitate data association between the frames to be mapped and helps localisation tasks to be performed accurately by the particle filter. The performance of the proposed technique is compared to other state of the art methods over different sequences of the Kitti raw dataset with different environmental structures, weather conditions and seasonal changes. The results obtained demonstrates the superiority of the proposed approach in terms of speed and representativeness of features needed for real-time localisation. Moreso, we achieved competitive accuracies compared to other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信