{"title":"遥感显示在地球气候和行星大气研究中的作用","authors":"A. Delgenio, J. Hansen","doi":"10.1201/9780429148392-12","DOIUrl":null,"url":null,"abstract":"The communities of scientists who study the Earth's climate and the atmospheres of the other planets barely overlap, but the types of questions they pose and the resulting implications for the use and interpretation of remote sensing data sets have much in common. Both seek to determine the characteristic behavior of three-dimensional fluids that also evolve in time. Climate researchers want to know how and why the general patterns that define our climate today might be different in the next century. Planetary scientists try to understand why circulation patterns and clouds on Mars, Venus, or Jupiter are different from those on Earth. Both disciplines must aggregate large amounts of data covering long time periods and several altitudes to have a representative picture of the rapidly changing atmosphere they are studying. This emphasis separates climate scientists from weather forecasters, who focus at any one time on a limited number of images. Likewise, it separates planetary atmosphere researchers from planetary geologists, who rely primarily on single images (or mosaics of images covering the globe) to study two-dimensional planetary surfaces that are mostly static over the duration of a spacecraft mission yet reveal dynamic processes acting over thousands to millions of years. Remote sensing displays are usually two-dimensional projections that capture an atmosphere at an instant in time. How scientists manipulate and display such data, how they interpret what they see, and how they thereby understand the physical processes that cause what they see, are the challenges I discuss in this chapter. I begin by discussing differences in how novices and experts in the field relate displays of data to the real world. This leads to a discussion of the use and abuse of image enhancement and color in remote sensing displays. I then show some examples of techniques used by scientists in climate and planetary research to both convey information and design research strategies using remote sensing displays.","PeriodicalId":345464,"journal":{"name":"Interpreting Remote Sensing Imagery","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Remote Sensing Displays in Earth Climate and Planetary Atmospheric Research\",\"authors\":\"A. Delgenio, J. Hansen\",\"doi\":\"10.1201/9780429148392-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The communities of scientists who study the Earth's climate and the atmospheres of the other planets barely overlap, but the types of questions they pose and the resulting implications for the use and interpretation of remote sensing data sets have much in common. Both seek to determine the characteristic behavior of three-dimensional fluids that also evolve in time. Climate researchers want to know how and why the general patterns that define our climate today might be different in the next century. Planetary scientists try to understand why circulation patterns and clouds on Mars, Venus, or Jupiter are different from those on Earth. Both disciplines must aggregate large amounts of data covering long time periods and several altitudes to have a representative picture of the rapidly changing atmosphere they are studying. This emphasis separates climate scientists from weather forecasters, who focus at any one time on a limited number of images. Likewise, it separates planetary atmosphere researchers from planetary geologists, who rely primarily on single images (or mosaics of images covering the globe) to study two-dimensional planetary surfaces that are mostly static over the duration of a spacecraft mission yet reveal dynamic processes acting over thousands to millions of years. Remote sensing displays are usually two-dimensional projections that capture an atmosphere at an instant in time. How scientists manipulate and display such data, how they interpret what they see, and how they thereby understand the physical processes that cause what they see, are the challenges I discuss in this chapter. I begin by discussing differences in how novices and experts in the field relate displays of data to the real world. This leads to a discussion of the use and abuse of image enhancement and color in remote sensing displays. I then show some examples of techniques used by scientists in climate and planetary research to both convey information and design research strategies using remote sensing displays.\",\"PeriodicalId\":345464,\"journal\":{\"name\":\"Interpreting Remote Sensing Imagery\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interpreting Remote Sensing Imagery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429148392-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpreting Remote Sensing Imagery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429148392-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Role of Remote Sensing Displays in Earth Climate and Planetary Atmospheric Research
The communities of scientists who study the Earth's climate and the atmospheres of the other planets barely overlap, but the types of questions they pose and the resulting implications for the use and interpretation of remote sensing data sets have much in common. Both seek to determine the characteristic behavior of three-dimensional fluids that also evolve in time. Climate researchers want to know how and why the general patterns that define our climate today might be different in the next century. Planetary scientists try to understand why circulation patterns and clouds on Mars, Venus, or Jupiter are different from those on Earth. Both disciplines must aggregate large amounts of data covering long time periods and several altitudes to have a representative picture of the rapidly changing atmosphere they are studying. This emphasis separates climate scientists from weather forecasters, who focus at any one time on a limited number of images. Likewise, it separates planetary atmosphere researchers from planetary geologists, who rely primarily on single images (or mosaics of images covering the globe) to study two-dimensional planetary surfaces that are mostly static over the duration of a spacecraft mission yet reveal dynamic processes acting over thousands to millions of years. Remote sensing displays are usually two-dimensional projections that capture an atmosphere at an instant in time. How scientists manipulate and display such data, how they interpret what they see, and how they thereby understand the physical processes that cause what they see, are the challenges I discuss in this chapter. I begin by discussing differences in how novices and experts in the field relate displays of data to the real world. This leads to a discussion of the use and abuse of image enhancement and color in remote sensing displays. I then show some examples of techniques used by scientists in climate and planetary research to both convey information and design research strategies using remote sensing displays.